Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
unsloth/Llama-3.1-Nemotron-70B-Instruct - GGUF
This repo contains GGUF format model files for unsloth/Llama-3.1-Nemotron-70B-Instruct.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Llama-3.1-Nemotron-70B-Instruct-Q2_K.gguf | Q2_K | 26.375 GB | smallest, significant quality loss - not recommended for most purposes |
Llama-3.1-Nemotron-70B-Instruct-Q3_K_S.gguf | Q3_K_S | 30.912 GB | very small, high quality loss |
Llama-3.1-Nemotron-70B-Instruct-Q3_K_M.gguf | Q3_K_M | 34.267 GB | very small, high quality loss |
Llama-3.1-Nemotron-70B-Instruct-Q3_K_L.gguf | Q3_K_L | 37.141 GB | small, substantial quality loss |
Llama-3.1-Nemotron-70B-Instruct-Q4_0.gguf | Q4_0 | 39.970 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Llama-3.1-Nemotron-70B-Instruct-Q4_K_S.gguf | Q4_K_S | 40.347 GB | small, greater quality loss |
Llama-3.1-Nemotron-70B-Instruct-Q4_K_M.gguf | Q4_K_M | 42.520 GB | medium, balanced quality - recommended |
Llama-3.1-Nemotron-70B-Instruct-Q5_0.gguf | Q5_0 | 48.657 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Llama-3.1-Nemotron-70B-Instruct-Q5_K_S.gguf | Q5_K_S | 48.657 GB | large, low quality loss - recommended |
Llama-3.1-Nemotron-70B-Instruct-Q5_K_M.gguf | Q5_K_M | 49.950 GB | large, very low quality loss - recommended |
Llama-3.1-Nemotron-70B-Instruct-Q6_K | Q6_K | 57.888 GB | very large, extremely low quality loss |
Llama-3.1-Nemotron-70B-Instruct-Q8_0 | Q8_0 | 74.975 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Llama-3.1-Nemotron-70B-Instruct-GGUF --include "Llama-3.1-Nemotron-70B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Llama-3.1-Nemotron-70B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
- Downloads last month
- 65
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tensorblock/Llama-3.1-Nemotron-70B-Instruct-GGUF
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.1-70B-Instruct
Finetuned
unsloth/Llama-3.1-Nemotron-70B-Instruct