metadata
tags:
- autonlp
- question-answering
language: unk
widget:
- text: Who loves AutoNLP?
context: Everyone loves AutoNLP
datasets:
- teacookies/autonlp-data-roberta-base-squad2
co2_eq_emissions: 56.45146749922553
Model Trained Using AutoNLP
- Problem type: Extractive Question Answering
- Model ID: 24465515
- CO2 Emissions (in grams): 56.45146749922553
Validation Metrics
- Loss: 0.5932255387306213
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fteacookies%2Fautonlp-roberta-base-squad2-24465515
Or Python API:
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465515", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-roberta-base-squad2-24465515", use_auth_token=True)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits