histo_train_vit / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
c52ab8e
|
raw
history blame
2.4 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
base_model: google/vit-base-patch16-224
model-index:
  - name: histo_train_vit
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - type: accuracy
            value: 0.825
            name: Accuracy

histo_train_vit

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7340
  • Accuracy: 0.825

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0481 1.67 10 0.4926 0.825
0.3714 3.33 20 0.3388 0.9
0.0642 5.0 30 0.3255 0.875
0.0199 6.67 40 0.4111 0.875
0.0074 8.33 50 0.3334 0.925
0.0024 10.0 60 0.3710 0.9
0.0131 11.67 70 0.5366 0.85
0.0067 13.33 80 0.5172 0.875
0.0152 15.0 90 0.4835 0.9
0.0058 16.67 100 0.3979 0.875
0.0005 18.33 110 0.5964 0.825
0.0008 20.0 120 0.7340 0.825

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2