trained_model

This model is a fine-tuned version of Qwen/Qwen2.5-0.5B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5432
  • Bertscore Precision: 0.9305
  • Bertscore Recall: 0.9338
  • Bertscore F1: 0.9321

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Bertscore Precision Bertscore Recall Bertscore F1
No log 0.9664 18 1.1003 0.8802 0.8897 0.8849
1.7123 1.9866 37 0.6787 0.9207 0.9228 0.9218
1.7123 2.9530 55 0.5895 0.9300 0.9330 0.9315
0.5828 3.9732 74 0.5516 0.9330 0.9355 0.9342
0.4501 4.8322 90 0.5432 0.9305 0.9338 0.9321

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.5.1+cpu
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
135
Safetensors
Model size
494M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for taronklm/trained_model

Base model

Qwen/Qwen2.5-0.5B
Adapter
(164)
this model