Uploaded model
- Developed by: taoki
- License: gemma
- Finetuned from model : unsloth/gemma-2b-it-bnb-4bit
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained(
"taoki/gemma-2b-it-qlora-amenokaku-code"
)
model = AutoModelForCausalLM.from_pretrained(
"taoki/gemma-2b-it-qlora-amenokaku-code"
)
if torch.cuda.is_available():
model = model.to("cuda")
prompt="""<start_of_turn>user
紫式部と清少納言の作風をjsonで出力してください。
<end_of_turn>
<start_of_turn>model
"""
input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**input_ids,
max_new_tokens=512,
do_sample=True,
top_p=0.95,
temperature=0.1,
repetition_penalty=1.0,
)
print(tokenizer.decode(outputs[0]))
Output
<bos><start_of_turn>user
紫式部と清少納言の作風をjsonで出力してください。<end_of_turn>
<start_of_turn>model
```json
{
"紫式部": {
"style": "紫式部",
"name": "紫式部",
"description": "紫式部の作風"
},
"清少納言": {
"style": "清少納言",
"name": "清少納言",
"description": "清少納言の作風"
}
}
```<eos>
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for taoki/gemma-2b-it-qlora-amenokaku-code
Base model
unsloth/gemma-2b-it-bnb-4bit