|
--- |
|
license: cc-by-nc-sa-4.0 |
|
base_model: InstaDeepAI/nucleotide-transformer-v2-50m-multi-species |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: nucleotide-transformer-v2-50m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nucleotide-transformer-v2-50m-multi-species_ft_BioS45_1kbpHG19_DHSs_H3K27AC |
|
|
|
This model is a fine-tuned version of [InstaDeepAI/nucleotide-transformer-v2-50m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-50m-multi-species) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4618 |
|
- F1 Score: 0.8488 |
|
- Precision: 0.8116 |
|
- Recall: 0.8895 |
|
- Accuracy: 0.8347 |
|
- Auc: 0.9100 |
|
- Prc: 0.9051 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| |
|
| 0.5436 | 0.2103 | 500 | 0.4336 | 0.8161 | 0.8074 | 0.825 | 0.8061 | 0.8826 | 0.8798 | |
|
| 0.4386 | 0.4207 | 1000 | 0.4171 | 0.8423 | 0.7929 | 0.8984 | 0.8246 | 0.9017 | 0.8982 | |
|
| 0.402 | 0.6310 | 1500 | 0.3979 | 0.8486 | 0.7977 | 0.9065 | 0.8313 | 0.9083 | 0.9055 | |
|
| 0.4019 | 0.8414 | 2000 | 0.3865 | 0.8505 | 0.7961 | 0.9129 | 0.8326 | 0.9060 | 0.9000 | |
|
| 0.382 | 1.0517 | 2500 | 0.4091 | 0.8513 | 0.8169 | 0.8887 | 0.8380 | 0.9131 | 0.9049 | |
|
| 0.3297 | 1.2621 | 3000 | 0.4890 | 0.8590 | 0.8143 | 0.9089 | 0.8443 | 0.9105 | 0.8922 | |
|
| 0.3417 | 1.4724 | 3500 | 0.4246 | 0.8517 | 0.8355 | 0.8685 | 0.8422 | 0.9138 | 0.9072 | |
|
| 0.3447 | 1.6828 | 4000 | 0.4299 | 0.8505 | 0.8408 | 0.8605 | 0.8422 | 0.9138 | 0.9052 | |
|
| 0.3384 | 1.8931 | 4500 | 0.4618 | 0.8488 | 0.8116 | 0.8895 | 0.8347 | 0.9100 | 0.9051 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.0 |
|
|