gena-lm-bert-base-t2t-multi_ft_BioS73_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of AIRI-Institute/gena-lm-bert-base-t2t-multi on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6584
  • F1 Score: 0.8725
  • Precision: 0.8147
  • Recall: 0.9392
  • Accuracy: 0.8535
  • Auc: 0.8951
  • Prc: 0.8518

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.6938 0.1864 500 0.6453 0.7873 0.7876 0.7870 0.7730 0.8514 0.8623
0.6039 0.3727 1000 0.4934 0.8216 0.7733 0.8764 0.7969 0.8716 0.8609
0.4786 0.5591 1500 0.4523 0.8358 0.7947 0.8813 0.8151 0.8667 0.8376
0.4456 0.7454 2000 0.4439 0.8342 0.8304 0.8380 0.8222 0.8845 0.8642
0.4328 0.9318 2500 0.4393 0.8402 0.8416 0.8387 0.8297 0.8905 0.8884
0.4165 1.1182 3000 0.4482 0.8541 0.7988 0.9176 0.8327 0.8928 0.8847
0.4133 1.3045 3500 0.4497 0.8546 0.7966 0.9218 0.8327 0.8546 0.7958
0.4166 1.4909 4000 0.4378 0.8572 0.7975 0.9267 0.8353 0.9034 0.8878
0.3901 1.6772 4500 0.4694 0.8544 0.8241 0.8869 0.8386 0.8856 0.8629
0.3914 1.8636 5000 0.4448 0.8535 0.8075 0.9050 0.8341 0.8829 0.8425
0.3634 2.0499 5500 0.5303 0.8551 0.8143 0.9001 0.8371 0.8903 0.8633
0.4353 2.2363 6000 0.4807 0.8573 0.8034 0.9190 0.8367 0.8540 0.7970
0.3747 2.4227 6500 0.4642 0.8589 0.8117 0.9120 0.8401 0.8839 0.8317
0.4069 2.6090 7000 0.4868 0.8553 0.8290 0.8834 0.8405 0.8895 0.8494
0.379 2.7954 7500 0.4786 0.8594 0.8217 0.9008 0.8427 0.8977 0.8673
0.3817 2.9817 8000 0.5133 0.8606 0.8203 0.9050 0.8435 0.9106 0.8982
0.3913 3.1681 8500 0.5098 0.8602 0.815 0.9106 0.8420 0.8636 0.8122
0.3783 3.3545 9000 0.5139 0.8609 0.8221 0.9036 0.8442 0.8869 0.8522
0.4031 3.5408 9500 0.5302 0.8628 0.8227 0.9071 0.8461 0.9093 0.8907
0.3905 3.7272 10000 0.5376 0.8643 0.8109 0.9253 0.8449 0.9103 0.8868
0.3893 3.9135 10500 0.5243 0.8615 0.8214 0.9057 0.8446 0.9162 0.9067
0.3635 4.0999 11000 0.6047 0.8614 0.8528 0.8701 0.8505 0.9016 0.8770
0.4137 4.2862 11500 0.5756 0.8567 0.8511 0.8624 0.8461 0.9134 0.8962
0.3747 4.4726 12000 0.5890 0.8662 0.8254 0.9113 0.8498 0.8634 0.8047
0.42 4.6590 12500 0.5722 0.8676 0.8267 0.9127 0.8513 0.8865 0.8309
0.3957 4.8453 13000 0.5824 0.8665 0.8116 0.9295 0.8472 0.9139 0.9004
0.3701 5.0317 13500 0.5850 0.8697 0.8278 0.9162 0.8535 0.8994 0.8633
0.3653 5.2180 14000 0.6013 0.8697 0.8098 0.9392 0.8498 0.9012 0.8739
0.3956 5.4044 14500 0.6008 0.8672 0.8464 0.8890 0.8546 0.8989 0.8667
0.3767 5.5908 15000 0.6562 0.8594 0.8544 0.8645 0.8490 0.9128 0.9003
0.3733 5.7771 15500 0.6134 0.8646 0.8472 0.8827 0.8524 0.9076 0.8824
0.3798 5.9635 16000 0.6094 0.8701 0.8131 0.9358 0.8509 0.9110 0.8878
0.3796 6.1498 16500 0.6068 0.8737 0.8315 0.9204 0.8580 0.8957 0.8634
0.3674 6.3362 17000 0.6217 0.8727 0.8269 0.9239 0.8561 0.9120 0.8868
0.3719 6.5225 17500 0.6346 0.8730 0.8413 0.9071 0.8591 0.9199 0.9018
0.3754 6.7089 18000 0.6272 0.8719 0.8141 0.9385 0.8528 0.9038 0.8661
0.3674 6.8953 18500 0.6343 0.8724 0.8285 0.9211 0.8561 0.9069 0.8874
0.3511 7.0816 19000 0.6584 0.8725 0.8147 0.9392 0.8535 0.8951 0.8518

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0
Downloads last month
10
Safetensors
Model size
111M params
Tensor type
I64
·
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tanoManzo/gena-lm-bert-base-t2t-multi_ft_BioS73_1kbpHG19_DHSs_H3K27AC

Finetuned
(10)
this model