gena-lm-bert-base-t2t-multi_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of AIRI-Institute/gena-lm-bert-base-t2t-multi on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4666
  • F1 Score: 0.8442
  • Precision: 0.8154
  • Recall: 0.8751
  • Accuracy: 0.8333
  • Auc: 0.8995
  • Prc: 0.8745

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.6931 0.0839 500 0.6427 0.7390 0.6242 0.9057 0.6699 0.7821 0.7840
0.6219 0.1679 1000 0.5689 0.7390 0.7963 0.6893 0.7487 0.8086 0.7935
0.5477 0.2518 1500 0.5181 0.7949 0.7556 0.8386 0.7767 0.8398 0.8123
0.5125 0.3358 2000 0.4999 0.8031 0.7565 0.8559 0.7834 0.8496 0.8161
0.4961 0.4197 2500 0.5177 0.8055 0.7647 0.8510 0.7879 0.8371 0.7976
0.4969 0.5037 3000 0.4908 0.8153 0.7495 0.8936 0.7910 0.8582 0.8306
0.4777 0.5876 3500 0.4991 0.8196 0.7549 0.8966 0.7963 0.8630 0.8307
0.4836 0.6716 4000 0.4718 0.8230 0.7577 0.9005 0.8000 0.8608 0.8324
0.4748 0.7555 4500 0.5299 0.7963 0.8009 0.7918 0.7910 0.8567 0.8069
0.4667 0.8395 5000 0.4743 0.8241 0.7622 0.8969 0.8024 0.8715 0.8450
0.4717 0.9234 5500 0.4981 0.8105 0.8091 0.8120 0.8041 0.8772 0.8542
0.4707 1.0074 6000 0.4675 0.8273 0.7656 0.8998 0.8061 0.8751 0.8371
0.459 1.0913 6500 0.4867 0.8192 0.8012 0.8380 0.8091 0.8778 0.8546
0.4544 1.1753 7000 0.4712 0.8322 0.7557 0.9258 0.8073 0.8264 0.7430
0.4324 1.2592 7500 0.4993 0.8185 0.8147 0.8224 0.8118 0.8687 0.8163
0.436 1.3432 8000 0.4777 0.8352 0.7641 0.9209 0.8125 0.8185 0.7469
0.4464 1.4271 8500 0.5148 0.8299 0.7497 0.9294 0.8034 0.8729 0.8419
0.4537 1.5111 9000 0.4503 0.8296 0.8028 0.8582 0.8180 0.8796 0.8409
0.4276 1.5950 9500 0.4540 0.8356 0.8014 0.8728 0.8227 0.8926 0.8680
0.4323 1.6790 10000 0.4512 0.8380 0.7949 0.8861 0.8232 0.8748 0.8222
0.4384 1.7629 10500 0.4724 0.8386 0.7655 0.9271 0.8158 0.8836 0.8405
0.4076 1.8469 11000 0.4626 0.8335 0.8204 0.8471 0.8254 0.8813 0.8340
0.439 1.9308 11500 0.4399 0.8443 0.7807 0.9193 0.8251 0.8888 0.8487
0.4164 2.0148 12000 0.4522 0.8437 0.7820 0.9161 0.8249 0.8940 0.8548
0.4075 2.0987 12500 0.4718 0.8417 0.8069 0.8796 0.8292 0.8962 0.8771
0.406 2.1827 13000 0.4935 0.8233 0.8442 0.8035 0.8220 0.9000 0.8729
0.3958 2.2666 13500 0.4891 0.8427 0.8172 0.8699 0.8324 0.8896 0.8443
0.4353 2.3506 14000 0.4666 0.8442 0.8154 0.8751 0.8333 0.8995 0.8745

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0
Downloads last month
3
Safetensors
Model size
111M params
Tensor type
I64
·
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tanoManzo/gena-lm-bert-base-t2t-multi_ft_BioS2_1kbpHG19_DHSs_H3K27AC

Finetuned
(10)
this model