tangled-llama-e-128k-v0.1

logo

A pretrained language model based on the Llama model with about 134.2M parameters. This model has been trained on 9.9B (9,889,496,064) tokens from more than ??? (???) dataset rows.

This model isn't designed for immediate use but rather for Continued Pretraining and Finetuning on a downstream task. While it can handle a context length of up to 128K (131,072) tokens, it was pretrained with sequences of 512 (512) tokens.

The objective is to streamline the cognitive or reasoning core, eliminating any redundant knowledge from the model.

loss, val_loss

val_ppl

epoch

learning_rate

Pretrain

134,234,368 params 653.11 TFLOPS on 1x RTX 3090 24GB

Epoch 3 | iter 1755912 step 38172 | loss train: 2.350, val: 2.473 | iter time: 779.54 ms (step) remaining time: 0:00:08
Final evaluation | val loss: 2.471 | val ppl: 11.837

----------------------------------------
| Performance
| - Total tokens  : 9,889,493,504
| - Training Time : 448691.01 s
| - Tok/sec       : 5162.13 tok/s
| ----------------------------------------
| Memory Usage
| - Memory Used   : 23.47 GB
----------------------------------------

Pretrain Evaluation

lm-evaluation-harness

litgpt evaluate --tasks 'hellaswag,gsm8k,truthfulqa_mc2,mmlu,winogrande,arc_challenge' --out_dir 'evaluate-quick/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'leaderboard' --out_dir 'evaluate-leaderboard/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'gsm8k,mathqa' --out_dir 'evaluate-math/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'mmlu,mmlu_pro' --out_dir 'evaluate-mmlu/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'arc_challenge,boolq,gpqa,hellaswag,openbookqa,piqa,truthfulqa_mc2,winogrande' --out_dir 'evaluate-reasoning/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'wikitext,qasper' --out_dir 'evaluate-long/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.