Korean Otter
Otter λͺ¨λΈμ KoLLaVA-Instruct-150K μ€ Complex resoningμ ν΄λΉνλ 77k λ°μ΄ν°μ μΌλ‘ νμ΅νμ΅λλ€. Otter μ΄λ―Έμ§ λ°λͺ¨μμ νκ΅μ΄ μ§λ¬Έμ μ΄λμ λ μ΄ν΄ν΄ μμ΄λ‘ λ΅λ³νλ κ²μ νμΈνκ³ , ν΄λΉ λͺ¨λΈμ κ·Έλλ‘ κ°μ Έμ νκ΅μ΄ λ°μ΄ν°μ μΌλ‘ νμ΅μ΄ λλμ§ ν μ€νΈν λͺ¨λΈμ λλ€. GPU memory νκ³λ‘ Otterμ LLM λΆλΆμμ νΉμ λ μ΄μ΄ μ΄μ(>25)λ§ 1epoch νμ΅νμ΅λλ€. μ΄ λͺ¨λΈμ λ΅λ³ ν리ν°λ μ’μ§ μμ§λ§, λ λ§μ λ°μ΄ν°μ μΌλ‘ epochμ λλ € νμ΅νλ€λ©΄ λ μ’μ κ²°κ³Όλ₯Ό μ»μ μ μμ κ²μΌλ‘ 보μ λλ€. μ΄λ¬ν κ°λ₯μ±μ νμΈνλ€λ κ²μ μλ―Έκ° μλ€κ³ μκ°ν΄ λͺ¨λΈμ 곡μ ν©λλ€.
import mimetypes
import os
from io import BytesIO
from typing import Union
import cv2
import requests
import torch
import transformers
from PIL import Image
from torchvision.transforms import Compose, Resize, ToTensor
from tqdm import tqdm
import sys
from otter.modeling_otter import OtterForConditionalGeneration
# Disable warnings
requests.packages.urllib3.disable_warnings()
# ------------------- Utility Functions -------------------
def get_content_type(file_path):
content_type, _ = mimetypes.guess_type(file_path)
return content_type
# ------------------- Image and Video Handling Functions -------------------
def get_image(url: str) -> Union[Image.Image, list]:
if "://" not in url: # Local file
content_type = get_content_type(url)
else: # Remote URL
content_type = requests.head(url, stream=True, verify=False).headers.get("Content-Type")
if "image" in content_type:
if "://" not in url: # Local file
return Image.open(url)
else: # Remote URL
return Image.open(requests.get(url, stream=True, verify=False).raw)
else:
raise ValueError("Invalid content type. Expected image or video.")
# ------------------- OTTER Prompt and Response Functions -------------------
def get_formatted_prompt(prompt: str, in_context_prompts: list = []) -> str:
in_context_string = ""
for in_context_prompt, in_context_answer in in_context_prompts:
in_context_string += f"<image>User: {in_context_prompt} GPT:<answer> {in_context_answer}<|endofchunk|>"
return f"{in_context_string}<image>User: {prompt} GPT:<answer>"
def get_response(image_list, prompt: str, model=None, image_processor=None, in_context_prompts: list = []) -> str:
input_data = image_list
if isinstance(input_data, Image.Image):
vision_x = image_processor.preprocess([input_data], return_tensors="pt")["pixel_values"].unsqueeze(1).unsqueeze(0)
elif isinstance(input_data, list): # list of video frames
vision_x = image_processor.preprocess(input_data, return_tensors="pt")["pixel_values"].unsqueeze(1).unsqueeze(0)
else:
raise ValueError("Invalid input data. Expected PIL Image or list of video frames.")
lang_x = model.text_tokenizer(
[
get_formatted_prompt(prompt, in_context_prompts),
],
return_tensors="pt",
)
bad_words_id = tokenizer(["User:", "GPT1:", "GFT:", "GPT:"], add_special_tokens=False).input_ids
generated_text = model.generate(
vision_x=vision_x.to(model.device),
lang_x=lang_x["input_ids"].to(model.device),
attention_mask=lang_x["attention_mask"].to(model.device),
max_new_tokens=512,
num_beams=3,
no_repeat_ngram_size=3,
bad_words_ids=bad_words_id,
)
parsed_output = (
model.text_tokenizer.decode(generated_text[0])
.split("<answer>")[-1]
.lstrip()
.rstrip()
.split("<|endofchunk|>")[0]
.lstrip()
.rstrip()
.lstrip('"')
.rstrip('"')
)
return parsed_output
# ------------------- Main Function -------------------
if __name__ == "__main__":
model = OtterForConditionalGeneration.from_pretrained("tabtoyou/Ko-Otter-9B-LACR-v0", device_map="auto")
model.text_tokenizer.padding_side = "left"
tokenizer = model.text_tokenizer
image_processor = transformers.CLIPImageProcessor()
model.eval()
while True:
urls = [
"https://images.cocodataset.org/train2017/000000339543.jpg",
"https://images.cocodataset.org/train2017/000000140285.jpg",
]
encoded_frames_list = []
for url in urls:
frames = get_image(url)
encoded_frames_list.append(frames)
in_context_prompts = []
in_context_examples = [
"μ΄λ―Έμ§μ λν΄ λ¬μ¬ν΄μ£ΌμΈμ::ν κ°μ‘±μ΄ μ€μ° μμμ μ¬μ§μ μ°κ³ μμ΅λλ€.",
]
for in_context_input in in_context_examples:
in_context_prompt, in_context_answer = in_context_input.split("::")
in_context_prompts.append((in_context_prompt.strip(), in_context_answer.strip()))
# prompts_input = input("Enter the prompts separated by commas (or type 'quit' to exit): ")
prompts_input = "μ΄λ―Έμ§μ λν΄ λ¬μ¬ν΄μ£ΌμΈμ"
prompts = [prompt.strip() for prompt in prompts_input.split(",")]
for prompt in prompts:
print(f"\nPrompt: {prompt}")
response = get_response(encoded_frames_list, prompt, model, image_processor, in_context_prompts)
print(f"Response: {response}")
if prompts_input.lower() == "quit":
break
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.