Korean Otter

Otter λͺ¨λΈμ„ KoLLaVA-Instruct-150K 쀑 Complex resoning에 ν•΄λ‹Ήν•˜λŠ” 77k λ°μ΄ν„°μ…‹μœΌλ‘œ ν•™μŠ΅ν–ˆμŠ΅λ‹ˆλ‹€. Otter 이미지 데λͺ¨μ—μ„œ ν•œκ΅­μ–΄ μ§ˆλ¬Έμ„ μ–΄λŠμ •λ„ 이해해 μ˜μ–΄λ‘œ λ‹΅λ³€ν•˜λŠ” 것을 ν™•μΈν•˜κ³ , ν•΄λ‹Ή λͺ¨λΈμ„ κ·ΈλŒ€λ‘œ 가져와 ν•œκ΅­μ–΄ λ°μ΄ν„°μ…‹μœΌλ‘œ ν•™μŠ΅μ΄ λ˜λŠ”μ§€ ν…ŒμŠ€νŠΈν•œ λͺ¨λΈμž…λ‹ˆλ‹€. GPU memory ν•œκ³„λ‘œ Otter의 LLM λΆ€λΆ„μ—μ„œ νŠΉμ • λ ˆμ΄μ–΄ 이상(>25)만 1epoch ν•™μŠ΅ν–ˆμŠ΅λ‹ˆλ‹€. 이 λͺ¨λΈμ˜ λ‹΅λ³€ ν€„λ¦¬ν‹°λŠ” 쒋지 μ•Šμ§€λ§Œ, 더 λ§Žμ€ λ°μ΄ν„°μ…‹μœΌλ‘œ epoch을 늘렀 ν•™μŠ΅ν•œλ‹€λ©΄ 더 쒋은 κ²°κ³Όλ₯Ό 얻을 수 μžˆμ„ κ²ƒμœΌλ‘œ λ³΄μž…λ‹ˆλ‹€. μ΄λŸ¬ν•œ κ°€λŠ₯성을 ν™•μΈν–ˆλ‹€λŠ” 것에 μ˜λ―Έκ°€ μžˆλ‹€κ³  생각해 λͺ¨λΈμ„ κ³΅μœ ν•©λ‹ˆλ‹€.

import mimetypes
import os
from io import BytesIO
from typing import Union
import cv2
import requests
import torch
import transformers
from PIL import Image
from torchvision.transforms import Compose, Resize, ToTensor
from tqdm import tqdm
import sys

from otter.modeling_otter import OtterForConditionalGeneration


# Disable warnings
requests.packages.urllib3.disable_warnings()

# ------------------- Utility Functions -------------------


def get_content_type(file_path):
    content_type, _ = mimetypes.guess_type(file_path)
    return content_type


# ------------------- Image and Video Handling Functions -------------------

def get_image(url: str) -> Union[Image.Image, list]:
    if "://" not in url:  # Local file
        content_type = get_content_type(url)
    else:  # Remote URL
        content_type = requests.head(url, stream=True, verify=False).headers.get("Content-Type")

    if "image" in content_type:
        if "://" not in url:  # Local file
            return Image.open(url)
        else:  # Remote URL
            return Image.open(requests.get(url, stream=True, verify=False).raw)
    else:
        raise ValueError("Invalid content type. Expected image or video.")


# ------------------- OTTER Prompt and Response Functions -------------------


def get_formatted_prompt(prompt: str, in_context_prompts: list = []) -> str:
    in_context_string = ""
    for in_context_prompt, in_context_answer in in_context_prompts:
        in_context_string += f"<image>User: {in_context_prompt} GPT:<answer> {in_context_answer}<|endofchunk|>"
    return f"{in_context_string}<image>User: {prompt} GPT:<answer>"


def get_response(image_list, prompt: str, model=None, image_processor=None, in_context_prompts: list = []) -> str:
    input_data = image_list

    if isinstance(input_data, Image.Image):
        vision_x = image_processor.preprocess([input_data], return_tensors="pt")["pixel_values"].unsqueeze(1).unsqueeze(0)
    elif isinstance(input_data, list):  # list of video frames
        vision_x = image_processor.preprocess(input_data, return_tensors="pt")["pixel_values"].unsqueeze(1).unsqueeze(0)
    else:
        raise ValueError("Invalid input data. Expected PIL Image or list of video frames.")

    lang_x = model.text_tokenizer(
        [
            get_formatted_prompt(prompt, in_context_prompts),
        ],
        return_tensors="pt",
    )
    bad_words_id = tokenizer(["User:", "GPT1:", "GFT:", "GPT:"], add_special_tokens=False).input_ids
    generated_text = model.generate(
        vision_x=vision_x.to(model.device),
        lang_x=lang_x["input_ids"].to(model.device),
        attention_mask=lang_x["attention_mask"].to(model.device),
        max_new_tokens=512,
        num_beams=3,
        no_repeat_ngram_size=3,
        bad_words_ids=bad_words_id,
    )
    parsed_output = (
        model.text_tokenizer.decode(generated_text[0])
        .split("<answer>")[-1]
        .lstrip()
        .rstrip()
        .split("<|endofchunk|>")[0]
        .lstrip()
        .rstrip()
        .lstrip('"')
        .rstrip('"')
    )
    return parsed_output


# ------------------- Main Function -------------------

if __name__ == "__main__":
    model = OtterForConditionalGeneration.from_pretrained("tabtoyou/Ko-Otter-9B-LACR-v0", device_map="auto")
    model.text_tokenizer.padding_side = "left"
    tokenizer = model.text_tokenizer
    image_processor = transformers.CLIPImageProcessor()
    model.eval()

    while True:
        urls = [
            "https://images.cocodataset.org/train2017/000000339543.jpg",
            "https://images.cocodataset.org/train2017/000000140285.jpg",
        ]

        encoded_frames_list = []
        for url in urls:
            frames = get_image(url)
            encoded_frames_list.append(frames)

        in_context_prompts = []
        in_context_examples = [
            "이미지에 λŒ€ν•΄ λ¬˜μ‚¬ν•΄μ£Όμ„Έμš”::ν•œ 가쑱이 μ„€μ‚° μ•žμ—μ„œ 사진을 찍고 μžˆμŠ΅λ‹ˆλ‹€.",
        ]
        for in_context_input in in_context_examples:
            in_context_prompt, in_context_answer = in_context_input.split("::")
            in_context_prompts.append((in_context_prompt.strip(), in_context_answer.strip()))

        # prompts_input = input("Enter the prompts separated by commas (or type 'quit' to exit): ")
        prompts_input = "이미지에 λŒ€ν•΄ λ¬˜μ‚¬ν•΄μ£Όμ„Έμš”"

        prompts = [prompt.strip() for prompt in prompts_input.split(",")]

        for prompt in prompts:
            print(f"\nPrompt: {prompt}")
            response = get_response(encoded_frames_list, prompt, model, image_processor, in_context_prompts)
            print(f"Response: {response}")

        if prompts_input.lower() == "quit":
            break
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.