whisper-a-nomi-18

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0346
  • Wer: 14.4772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 132
  • num_epochs: 18
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.0 88 0.0813 11.4388
0.944 2.0 176 0.0636 11.2601
0.1726 3.0 264 0.0395 16.1752
0.0661 4.0 352 0.0895 25.7373
0.145 5.0 440 0.0627 19.9285
0.0218 6.0 528 0.0481 8.3110
0.0187 7.0 616 0.0782 23.0563
0.0282 8.0 704 0.0435 16.6220
0.0282 9.0 792 0.0284 11.7069
0.0055 10.0 880 0.0338 17.0688
0.0027 11.0 968 0.0463 17.3369
0.0039 12.0 1056 0.0362 11.6175
0.0038 13.0 1144 0.0353 14.6559
0.0014 14.0 1232 0.0347 14.5666
0.0 15.0 1320 0.0346 14.4772
0.0 16.0 1408 0.0346 14.4772
0.0 17.0 1496 0.0346 14.4772
0.0 18.0 1584 0.0346 14.4772

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for susmitabhatt/whisper-a-nomi-18

Finetuned
(2210)
this model