whisper-a-nomi-16

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0334
  • Wer: 10.9026

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 132
  • num_epochs: 16
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.0 88 0.0818 50.4915
0.9011 2.0 176 0.0692 30.5630
0.1774 3.0 264 0.0428 25.5585
0.0484 4.0 352 0.0953 27.9714
0.0393 5.0 440 0.0466 16.0858
0.0488 6.0 528 0.0490 21.5371
0.024 7.0 616 0.0281 18.0518
0.0076 8.0 704 0.0316 9.0259
0.0076 9.0 792 0.0253 13.2261
0.0023 10.0 880 0.0269 10.8132
0.0011 11.0 968 0.0313 10.0089
0.0002 12.0 1056 0.0364 10.0089
0.0003 13.0 1144 0.0350 10.9920
0.0 14.0 1232 0.0336 10.9920
0.0 15.0 1320 0.0335 10.9920
0.0 16.0 1408 0.0334 10.9026

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
17
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for susmitabhatt/whisper-a-nomi-16

Finetuned
(2150)
this model