whisper-a-nomi-15

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0280
  • Wer: 196.1573

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 132
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.0 88 0.2007 80.2502
0.9112 2.0 176 2.4319 100.0
2.8333 3.0 264 0.0985 34.4951
0.1561 4.0 352 0.0809 36.6399
0.0444 5.0 440 0.0607 30.4736
0.0244 6.0 528 0.0363 28.5076
0.0121 7.0 616 0.0430 24.8436
0.009 8.0 704 0.0398 31.0992
0.009 9.0 792 0.0360 198.9276
0.0084 10.0 880 0.0401 201.4298
0.0028 11.0 968 0.0278 196.2466
0.0 12.0 1056 0.0279 196.1573
0.0 13.0 1144 0.0280 196.1573
0.0 14.0 1232 0.0280 196.1573
0.0 15.0 1320 0.0280 196.1573

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
3
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for susmitabhatt/whisper-a-nomi-15

Finetuned
(2210)
this model