SpanMarker

This is a SpanMarker model trained on the SpeedOfMagic/ontonotes_english dataset that can be used for Named Entity Recognition.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
CARDINAL "tens of thousands", "One point three million", "two"
DATE "Sunday", "a year", "two thousand one"
EVENT "World War Two", "Katrina", "Hurricane Katrina"
FAC "Route 80", "the White House", "Dylan 's Candy Bars"
GPE "America", "Atlanta", "Miami"
LANGUAGE "English", "Russian", "Arabic"
LAW "Roe", "the Patriot Act", "FISA"
LOC "Asia", "the Gulf Coast", "the West Bank"
MONEY "twenty - seven million dollars", "one hundred billion dollars", "less than fourteen thousand dollars"
NORP "American", "Muslim", "Americans"
ORDINAL "third", "First", "first"
ORG "Wal - Mart", "Wal - Mart 's", "a Wal - Mart"
PERCENT "seventeen percent", "sixty - seven percent", "a hundred percent"
PERSON "Kira Phillips", "Rick Sanchez", "Bob Shapiro"
PRODUCT "Columbia", "Discovery Shuttle", "Discovery"
QUANTITY "forty - five miles", "six thousand feet", "a hundred and seventy pounds"
TIME "tonight", "evening", "Tonight"
WORK_OF_ART "A Tale of Two Cities", "Newsnight", "Headline News"

Evaluation

Metrics

Label Precision Recall F1
all 0.9046 0.9109 0.9077
CARDINAL 0.8579 0.8524 0.8552
DATE 0.8634 0.8893 0.8762
EVENT 0.6719 0.6935 0.6825
FAC 0.7211 0.7852 0.7518
GPE 0.9725 0.9647 0.9686
LANGUAGE 0.9286 0.5909 0.7222
LAW 0.7941 0.7297 0.7606
LOC 0.7632 0.8101 0.7859
MONEY 0.8914 0.8885 0.8900
NORP 0.9311 0.9643 0.9474
ORDINAL 0.8227 0.9282 0.8723
ORG 0.9217 0.9073 0.9145
PERCENT 0.9145 0.9198 0.9171
PERSON 0.9638 0.9643 0.9640
PRODUCT 0.6778 0.8026 0.7349
QUANTITY 0.7850 0.8 0.7925
TIME 0.6794 0.6730 0.6762
WORK_OF_ART 0.6562 0.6442 0.6502

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
# Run inference
entities = model.predict("Robert White, Canadian Auto Workers union president, used the impending Scarborough shutdown to criticize the U.S. - Canada free trade agreement and its champion, Prime Minister Brian Mulroney.")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("supreethrao/instructNER_ontonotes5_xl-finetuned")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 1 18.1647 210
Entities per sentence 0 1.3655 32

Training Hyperparameters

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Framework Versions

  • Python: 3.10.13
  • SpanMarker: 1.5.0
  • Transformers: 4.35.2
  • PyTorch: 2.1.1
  • Datasets: 2.15.0
  • Tokenizers: 0.15.0

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
167
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train supreethrao/instructNER_ontonotes5_xl

Evaluation results