mishig's picture
mishig HF staff
Upload README.md
d7e0efe
|
raw
history blame
3.71 kB
---
language: en
datasets:
- superb
tags:
- speech
- audio
- hubert
- audio-classification
license: apache-2.0
widget:
- example_title: Speech Commands "down"
src: /static-proxy?url=https%3A%2F%2Fcdn-media.huggingface.co%2Fspeech_samples%2Fkeyword_spotting_down.wav%3C%2Fspan%3E%3C!-- HTML_TAG_END -->
- example_title: Speech Commands "go"
src: /static-proxy?url=https%3A%2F%2Fcdn-media.huggingface.co%2Fspeech_samples%2Fkeyword_spotting_go.wav%3C%2Fspan%3E%3C!-- HTML_TAG_END -->
---
# Hubert-Base for Keyword Spotting
## Model description
This is a ported version of [S3PRL's Hubert for the SUPERB Keyword Spotting task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/speech_commands).
The base model is [hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960), which is pretrained on 16kHz
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
## Task and dataset description
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
inference time are all crucial. SUPERB uses the widely used
[Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task.
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
false positive.
For the original model's training and evaluation instructions refer to the
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ks-keyword-spotting).
## Usage examples
You can use the model via the Audio Classification pipeline:
```python
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
classifier = pipeline("audio-classification", model="superb/hubert-base-superb-ks")
labels = classifier(dataset[0]["file"], top_k=5)
```
Or use the model directly:
```python
import torch
from datasets import load_dataset
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
from torchaudio.sox_effects import apply_effects_file
effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]]
def map_to_array(example):
speech, _ = apply_effects_file(example["file"], effects)
example["speech"] = speech.squeeze(0).numpy()
return example
# load a demo dataset and read audio files
dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
dataset = dataset.map(map_to_array)
model = HubertForSequenceClassification.from_pretrained("superb/hubert-base-superb-ks")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-base-superb-ks")
# compute attention masks and normalize the waveform if needed
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
```
## Eval results
The evaluation metric is accuracy.
| | **s3prl** | **transformers** |
|--------|-----------|------------------|
|**test**| `0.9630` | `0.9672` |
### BibTeX entry and citation info
```bibtex
@article{yang2021superb,
title={SUPERB: Speech processing Universal PERformance Benchmark},
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
journal={arXiv preprint arXiv:2105.01051},
year={2021}
}
```