Visualize in Weights & Biases

Meta-Llama-3-8B-Instruct-ORPO-QLoRA

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5734
  • Rewards/chosen: -0.0085
  • Rewards/rejected: -0.0105
  • Rewards/accuracies: 0.6070
  • Rewards/margins: 0.0020
  • Logps/rejected: -1.0492
  • Logps/chosen: -0.8470
  • Logits/rejected: -0.2321
  • Logits/chosen: -0.2275
  • Nll Loss: 0.5669
  • Log Odds Ratio: -0.6615
  • Log Odds Chosen: 0.3163

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
0.8633 0.0524 100 0.7181 -0.0135 -0.0158 0.6060 0.0023 -1.5779 -1.3476 -0.4503 -0.4466 0.7126 -0.6965 0.2913
0.7831 0.1048 200 0.6487 -0.0105 -0.0125 0.6140 0.0020 -1.2499 -1.0520 -0.3621 -0.3619 0.6432 -0.6627 0.2691
0.7146 0.1572 300 0.6238 -0.0102 -0.0122 0.6140 0.0020 -1.2194 -1.0173 -0.3196 -0.3169 0.6181 -0.6594 0.2790
0.7361 0.2096 400 0.6137 -0.0100 -0.0120 0.6140 0.0020 -1.2012 -1.0014 -0.2841 -0.2811 0.6078 -0.6618 0.2770
0.7382 0.2620 500 0.6066 -0.0099 -0.0119 0.6120 0.0020 -1.1884 -0.9868 -0.3023 -0.2982 0.6006 -0.6603 0.2812
0.7339 0.3143 600 0.6009 -0.0097 -0.0118 0.6100 0.0020 -1.1751 -0.9714 -0.2544 -0.2490 0.5948 -0.6587 0.2859
0.7133 0.3667 700 0.5968 -0.0096 -0.0116 0.6070 0.0020 -1.1590 -0.9588 -0.2830 -0.2764 0.5906 -0.6590 0.2828
0.6988 0.4191 800 0.5926 -0.0095 -0.0115 0.6070 0.0020 -1.1491 -0.9451 -0.2817 -0.2745 0.5864 -0.6576 0.2898
0.7493 0.4715 900 0.5882 -0.0093 -0.0114 0.6080 0.0021 -1.1357 -0.9301 -0.2547 -0.2476 0.5820 -0.6552 0.2952
0.7022 0.5239 1000 0.5842 -0.0091 -0.0111 0.6070 0.0020 -1.1110 -0.9090 -0.2588 -0.2514 0.5780 -0.6569 0.2962
0.6805 0.5763 1100 0.5807 -0.0089 -0.0108 0.6020 0.0020 -1.0833 -0.8865 -0.2590 -0.2519 0.5744 -0.6608 0.2937
0.6427 0.6287 1200 0.5780 -0.0087 -0.0107 0.6070 0.0020 -1.0670 -0.8682 -0.2483 -0.2430 0.5717 -0.6609 0.3024
0.6762 0.6811 1300 0.5762 -0.0086 -0.0106 0.6070 0.0020 -1.0576 -0.8586 -0.2376 -0.2322 0.5698 -0.6618 0.3069
0.6944 0.7335 1400 0.5750 -0.0085 -0.0105 0.6070 0.0020 -1.0548 -0.8542 -0.2468 -0.2420 0.5686 -0.6609 0.3102
0.6695 0.7859 1500 0.5742 -0.0085 -0.0105 0.6080 0.0020 -1.0505 -0.8493 -0.2426 -0.2372 0.5678 -0.6616 0.3135
0.7258 0.8382 1600 0.5738 -0.0085 -0.0105 0.6080 0.0020 -1.0497 -0.8485 -0.2418 -0.2371 0.5673 -0.6619 0.3140
0.7193 0.8906 1700 0.5735 -0.0085 -0.0105 0.6050 0.0020 -1.0499 -0.8477 -0.2403 -0.2352 0.5671 -0.6610 0.3162
0.7038 0.9430 1800 0.5734 -0.0085 -0.0105 0.6090 0.0020 -1.0493 -0.8471 -0.2360 -0.2311 0.5670 -0.6615 0.3164
0.6723 0.9954 1900 0.5734 -0.0085 -0.0105 0.6070 0.0020 -1.0493 -0.8470 -0.2369 -0.2320 0.5669 -0.6615 0.3168

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for statking/Meta-Llama-3-8B-Instruct-ORPO-QLoRA

Adapter
(663)
this model

Dataset used to train statking/Meta-Llama-3-8B-Instruct-ORPO-QLoRA