stablelm-zephyr-3b / README.md
reciprocate's picture
update mt bench plot & clean up minor typos
f224fe9
|
raw
history blame
10.7 kB
metadata
datasets:
  - HuggingFaceH4/ultrachat_200k
  - HuggingFaceH4/ultrafeedback_binarized
  - meta-math/MetaMathQA
  - WizardLM/WizardLM_evol_instruct_V2_196k
  - Intel/orca_dpo_pairs
language:
  - en
tags:
  - causal-lm
extra_gated_fields:
  Name: text
  Email: text
  Country: text
  Organization or Affiliation: text
  I ALLOW Stability AI to email me about new model releases: checkbox

StableLM Zephyr 3B

Model Description

StableLM Zephyr 3B is a 3 billion parameter instruction tuned inspired by HugginFaceH4's Zephyr 7B training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using Direct Preference Optimization (DPO), evaluation for this model based on MT Bench and Alpaca Benchmark

Usage

StableLM Zephyr 3B uses the following instruction format:

<|user|>
List 3 synonyms for the word "tiny"<|endoftext|>
<|assistant|>
1. Dwarf
2. Little
3. Petite<|endoftext|>

This format is also available through the tokenizer's apply_chat_template method:

from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
model = AutoModelForCausalLM.from_pretrained(
    'stabilityai/stablelm-zephyr-3b',
    trust_remote_code=True,
    device_map="auto"
)

prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}]
inputs = tokenizer.apply_chat_template(
    prompt,
    add_generation_prompt=True,
    return_tensors='pt'
)

tokens = model.generate(
    inputs.to(model.device),
    max_new_tokens=1024,
    temperature=0.8,
    do_sample=True
)

print(tokenizer.decode(tokens[0], skip_special_tokens=False))

Model Details

Training Dataset

The dataset is comprised of a mixture of open datasets large-scale datasets available on the HuggingFace Hub:

  1. SFT Datasets
  • HuggingFaceH4/ultrachat_200k
  • meta-math/MetaMathQA
  • WizardLM/WizardLM_evol_instruct_V2_196k
  • Open-Orca/SlimOrca
  1. Preference Datasets:
  • HuggingFaceH4/ultrafeedback_binarized
  • Intel/orca_dpo_pairs

Performance

MT-Bench and Alpaca Bench

mt_bench_plot
Model Size Alignment MT-Bench (score) AlpacaEval (win rate %)
StableLM Zephyr 3B 🪁 3B DPO 6.64 76.00
StableLM Zephyr (SFT only) 3B SFT 6.04 71.15
Capybara v1.9 3B dSFT 5.94 -
MPT-Chat 7B dSFT 5.42 -
Xwin-LM v0.1 7B dPPO 6.19 87.83
Mistral-Instruct v0.1 7B - 6.84 -
Zephyr-7b-α 7B dDPO 6.88 -
Zephyr-7b-β 7B dDPO 7.34 90.60
Falcon-Instruct 40B dSFT 5.17 45.71
Guanaco 65B SFT 6.41 71.80
Llama2-Chat 70B RLHF 6.86 92.66
Vicuna v1.3 33B dSFT 7.12 88.99
WizardLM v1.0 70B dSFT 7.71 -
Xwin-LM v0.1 70B dPPO - 95.57
GPT-3.5-turbo - RLHF 7.94 89.37
Claude 2 - RLHF 8.06 91.36
GPT-4 - RLHF 8.99 95.28

Other benchmark:

  1. HuggingFace OpenLLM Leaderboard

    Metric Value
    ARC (25-shot) 47.0
    HellaSwag (10-shot) 74.2
    MMLU (5-shot) 46.3
    TruthfulQA (0-shot) 46.5
    Winogrande (5-shot) 65.5
    GSM8K (5-shot) 42.3
  2. BigBench:

  • Average: 35.26
  • Details:
Task Version Metric Value Stderr
bigbench_causal_judgement 0 multiple_choice_grade 0.5316 0.0363
bigbench_date_understanding 0 multiple_choice_grade 0.4363 0.0259
bigbench_disambiguation_qa 0 multiple_choice_grade 0.3217 0.0291
bigbench_dyck_languages 0 multiple_choice_grade 0.1450 0.0111
bigbench_formal_fallacies_syllogisms_negation 0 multiple_choice_grade 0.4982 0.0042
bigbench_geometric_shapes 0 multiple_choice_grade 0.1086 0.0164
bigbench_hyperbaton 0 exact_str_match 0.0000 0.0000
bigbench_logical_deduction_five_objects 0 multiple_choice_grade 0.5232 0.0022
bigbench_logical_deduction_seven_objects 0 multiple_choice_grade 0.2480 0.0193
bigbench_logical_deduction_three_objects 0 multiple_choice_grade 0.1814 0.0146
bigbench_movie_recommendation 0 multiple_choice_grade 0.4067 0.0284
bigbench_navigate 0 multiple_choice_grade 0.2580 0.0196
bigbench_reasoning_about_colored_objects 0 multiple_choice_grade 0.5990 0.0155
bigbench_ruin_names 0 multiple_choice_grade 0.4370 0.0111
bigbench_salient_translation_error_detection 0 multiple_choice_grade 0.3951 0.0231
bigbench_snarks 0 multiple_choice_grade 0.2265 0.0133
bigbench_sports_understanding 0 multiple_choice_grade 0.6464 0.0356
bigbench_temporal_sequences 0 multiple_choice_grade 0.5091 0.0159
bigbench_tracking_shuffled_objects_five_objects 0 multiple_choice_grade 0.2680 0.0140
bigbench_tracking_shuffled_objects_seven_objects 0 multiple_choice_grade 0.1856 0.0110
bigbench_tracking_shuffled_objects_three_objects 0 multiple_choice_grade 0.1269 0.0080
  1. AGI Benchmark:
  • Average: 33.23
  • Details: | Task |Version| Metric |Value | |Stderr|

|------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2126|± |0.0257| | | |acc_norm|0.1890|± |0.0246| |agieval_gaokao_biology | 0|acc |0.2571|± |0.0302| | | |acc_norm|0.3143|± |0.0321| |agieval_gaokao_chemistry | 0|acc |0.2464|± |0.0300| | | |acc_norm|0.2899|± |0.0316| |agieval_gaokao_chinese | 0|acc |0.2927|± |0.0291| | | |acc_norm|0.3049|± |0.0294| |agieval_gaokao_english | 0|acc |0.6176|± |0.0278| | | |acc_norm|0.6438|± |0.0274| |agieval_gaokao_geography | 0|acc |0.3015|± |0.0326| | | |acc_norm|0.3065|± |0.0328| |agieval_gaokao_history | 0|acc |0.3106|± |0.0303| | | |acc_norm|0.3319|± |0.0308| |agieval_gaokao_mathqa | 0|acc |0.2650|± |0.0236| | | |acc_norm|0.2707|± |0.0237| |agieval_gaokao_physics | 0|acc |0.3450|± |0.0337| | | |acc_norm|0.3550|± |0.0339| |agieval_logiqa_en | 0|acc |0.2980|± |0.0179| | | |acc_norm|0.3195|± |0.0183| |agieval_logiqa_zh | 0|acc |0.2842|± |0.0177| | | |acc_norm|0.3318|± |0.0185| |agieval_lsat_ar | 0|acc |0.2000|± |0.0264| | | |acc_norm|0.2043|± |0.0266| |agieval_lsat_lr | 0|acc |0.3176|± |0.0206| | | |acc_norm|0.3275|± |0.0208| |agieval_lsat_rc | 0|acc |0.4312|± |0.0303| | | |acc_norm|0.4201|± |0.0301| |agieval_sat_en | 0|acc |0.6117|± |0.0340| | | |acc_norm|0.6117|± |0.0340| |agieval_sat_en_without_passage| 0|acc |0.3398|± |0.0331| | | |acc_norm|0.3495|± |0.0333| |agieval_sat_math | 0|acc |0.3182|± |0.0315| | | |acc_norm|0.2909|± |0.0307|

Training Infrastructure

  • Hardware: StableLM Zephyr 3B was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
  • Code Base: We use our internal script for SFT steps and used HuggingFace Alignment Handbook script for DPO training.

Use and Limitations

Intended Use

The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications.

Limitations and Bias

​ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.

Through internal testing, we discovered that while the model will not output harmful information if not prompted to do so, it is willing to output potentially harmful outputs or misinformation when the user requests it. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.