|
--- |
|
datasets: |
|
- HuggingFaceH4/ultrachat_200k |
|
- HuggingFaceH4/ultrafeedback_binarized |
|
- meta-math/MetaMathQA |
|
- WizardLM/WizardLM_evol_instruct_V2_196k |
|
- Intel/orca_dpo_pairs |
|
language: |
|
- en |
|
tags: |
|
- causal-lm |
|
extra_gated_fields: |
|
Name: text |
|
Email: text |
|
Country: text |
|
Organization or Affiliation: text |
|
I ALLOW Stability AI to email me about new model releases: checkbox |
|
--- |
|
# `Stable Zephyr 3B` |
|
|
|
## Model Description |
|
|
|
`Stable Zephyr 3B` is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on |
|
[MT Bench](https://tatsu-lab.github.io/alpaca_eval/) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/) |
|
|
|
## Usage |
|
|
|
Get started generating text with `Stable Zephyr 3B` by using the following code snippet: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-zephyr-3b-dpo") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"stable-zephyr-3b", |
|
trust_remote_code=True, |
|
torch_dtype="auto", |
|
) |
|
model.cuda() |
|
prompt = "<|user|>\nIn the field of quantum physics, what is superposition, and how does it relate to the phenomenon of quantum entanglement?<|endoftext|>\n<|assistant|>\n" |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
tokens = model.generate( |
|
**inputs, |
|
max_new_tokens=1024, |
|
temperature=0.7, |
|
top_p=0.95, |
|
do_sample=True, |
|
) |
|
print(tokenizer.decode(tokens[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## Model Details |
|
|
|
* **Developed by**: [Stability AI](https://stability.ai/) |
|
* **Model type**: `Stable Zephyr 3B` models are auto-regressive language models based on the transformer decoder architecture. |
|
* **Language(s)**: English |
|
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git) |
|
* **Finetuned from model**: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) |
|
* **License**: TBD |
|
* **Contact**: For questions and comments about the model, please email `[email protected]` |
|
|
|
### Training Dataset |
|
|
|
The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): |
|
1. SFT Datasets |
|
- HuggingFaceH4/ultrachat_200k |
|
- meta-math/MetaMathQA |
|
- Wizard Dataset |
|
- Open-Orca/SlimOrca |
|
2. Preference Datasets: |
|
- HuggingFaceH4/ultrafeedback_binarized |
|
- Intel/orca_dpo_pairs |
|
|
|
|
|
### Training Procedure |
|
|
|
## Performance |
|
|
|
### MT Bench and Alpaca Bench |
|
|
|
<img src="/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6310474ca119d49bc1eb0d80%2FLXOYt_ulqXSneMENUjI1O.png%26quot%3B%3C%2Fspan%3E alt="mt_bench_plot" width="600"/> |
|
|
|
| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) | |
|
|-------------|-----|----|---------------|--------------| |
|
| **Stable Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 | |
|
| Stable Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 | |
|
| MPT-Chat | 7B |dSFT |5.42| -| |
|
| Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83| |
|
| Mistral-Instructv0.1 | 7B| - | 6.84 |-| |
|
| Zephyr-7b-α |7B| dDPO| 6.88| -| |
|
| Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 | |
|
| Falcon-Instruct | 40B |dSFT |5.17 |45.71| |
|
| Guanaco | 65B | SFT |6.41| 71.80| |
|
| Llama2-Chat | 70B |RLHF |6.86| 92.66| |
|
| Vicuna v1.3 | 33B |dSFT |7.12 |88.99| |
|
| WizardLM v1.0 | 70B |dSFT |7.71 |-| |
|
| Xwin-LM v0.1 | 70B |dPPO |- |95.57| |
|
| GPT-3.5-turbo | - |RLHF |7.94 |89.37| |
|
| Claude 2 | - |RLHF |8.06| 91.36| |
|
| GPT-4 | -| RLHF |8.99| 95.28| |
|
|
|
## Other benchmark: |
|
1. **HuggingFace OpenLLM Leaderboard** |
|
| Metric | Value | |
|
|-----------------------|---------------------------| |
|
| ARC (25-shot) | 47.0 | |
|
| HellaSwag (10-shot) | 74.2 | |
|
| MMLU (5-shot) | 46.3 | |
|
| TruthfulQA (0-shot) | 46.5 | |
|
| Winogrande (5-shot) | 65.5 | |
|
| GSM8K (5-shot) | 42.3 | |
|
|
|
|
|
2. **BigBench**: |
|
|
|
- Average: 35.26 |
|
- Details: |
|
|
|
| Task | Version | Metric | Value | Stderr | |
|
|-----------------------------------------------------|---------|-------------------------|-------|--------| |
|
| bigbench_causal_judgement | 0 | multiple_choice_grade | 0.5316| 0.0363 | |
|
| bigbench_date_understanding | 0 | multiple_choice_grade | 0.4363| 0.0259 | |
|
| bigbench_disambiguation_qa | 0 | multiple_choice_grade | 0.3217| 0.0291 | |
|
| bigbench_dyck_languages | 0 | multiple_choice_grade | 0.1450| 0.0111 | |
|
| bigbench_formal_fallacies_syllogisms_negation | 0 | multiple_choice_grade | 0.4982| 0.0042 | |
|
| bigbench_geometric_shapes | 0 | multiple_choice_grade | 0.1086| 0.0164 | |
|
| bigbench_hyperbaton | 0 | exact_str_match | 0.0000| 0.0000 | |
|
| bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 0.5232| 0.0022 | |
|
| bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 0.2480| 0.0193 | |
|
| bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 0.1814| 0.0146 | |
|
| bigbench_movie_recommendation | 0 | multiple_choice_grade | 0.4067| 0.0284 | |
|
| bigbench_navigate | 0 | multiple_choice_grade | 0.2580| 0.0196 | |
|
| bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 0.5990| 0.0155 | |
|
| bigbench_ruin_names | 0 | multiple_choice_grade | 0.4370| 0.0111 | |
|
| bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 0.3951| 0.0231 | |
|
| bigbench_snarks | 0 | multiple_choice_grade | 0.2265| 0.0133 | |
|
| bigbench_sports_understanding | 0 | multiple_choice_grade | 0.6464| 0.0356 | |
|
| bigbench_temporal_sequences | 0 | multiple_choice_grade | 0.5091| 0.0159 | |
|
| bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 0.2680| 0.0140 | |
|
| bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 0.1856| 0.0110 | |
|
| bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 0.1269| 0.0080 | |
|
|
|
3. **AGI Benchmark**: |
|
- Average: 33.23 |
|
- Details: |
|
| Task |Version| Metric |Value | |Stderr| |
|
|------------------------------|------:|--------|-----:|---|-----:| |
|
|agieval_aqua_rat | 0|acc |0.2126|± |0.0257| |
|
| | |acc_norm|0.1890|± |0.0246| |
|
|agieval_gaokao_biology | 0|acc |0.2571|± |0.0302| |
|
| | |acc_norm|0.3143|± |0.0321| |
|
|agieval_gaokao_chemistry | 0|acc |0.2464|± |0.0300| |
|
| | |acc_norm|0.2899|± |0.0316| |
|
|agieval_gaokao_chinese | 0|acc |0.2927|± |0.0291| |
|
| | |acc_norm|0.3049|± |0.0294| |
|
|agieval_gaokao_english | 0|acc |0.6176|± |0.0278| |
|
| | |acc_norm|0.6438|± |0.0274| |
|
|agieval_gaokao_geography | 0|acc |0.3015|± |0.0326| |
|
| | |acc_norm|0.3065|± |0.0328| |
|
|agieval_gaokao_history | 0|acc |0.3106|± |0.0303| |
|
| | |acc_norm|0.3319|± |0.0308| |
|
|agieval_gaokao_mathqa | 0|acc |0.2650|± |0.0236| |
|
| | |acc_norm|0.2707|± |0.0237| |
|
|agieval_gaokao_physics | 0|acc |0.3450|± |0.0337| |
|
| | |acc_norm|0.3550|± |0.0339| |
|
|agieval_logiqa_en | 0|acc |0.2980|± |0.0179| |
|
| | |acc_norm|0.3195|± |0.0183| |
|
|agieval_logiqa_zh | 0|acc |0.2842|± |0.0177| |
|
| | |acc_norm|0.3318|± |0.0185| |
|
|agieval_lsat_ar | 0|acc |0.2000|± |0.0264| |
|
| | |acc_norm|0.2043|± |0.0266| |
|
|agieval_lsat_lr | 0|acc |0.3176|± |0.0206| |
|
| | |acc_norm|0.3275|± |0.0208| |
|
|agieval_lsat_rc | 0|acc |0.4312|± |0.0303| |
|
| | |acc_norm|0.4201|± |0.0301| |
|
|agieval_sat_en | 0|acc |0.6117|± |0.0340| |
|
| | |acc_norm|0.6117|± |0.0340| |
|
|agieval_sat_en_without_passage| 0|acc |0.3398|± |0.0331| |
|
| | |acc_norm|0.3495|± |0.0333| |
|
|agieval_sat_math | 0|acc |0.3182|± |0.0315| |
|
| | |acc_norm|0.2909|± |0.0307| |
|
|
|
### Training Infrastructure |
|
|
|
* **Hardware**: `Stable Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes. |
|
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training. |
|
## Use and Limitations |
|
|
|
### Intended Use |
|
|
|
The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. |
|
|
|
### Limitations and Bias |
|
|
|
This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses. |
|
|
|
Through internal testing, we discovered that while the model will not output harmful information if not prompted to do so, it is willing to output potentially harmful outputs or misinformation when the user requests it. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. |