GGUF
English
causal-lm
Inference Endpoints
conversational

StableLM 2 12B Chat GGUF

This repository contains GGUF format files for StableLM 2 12B Chat. Files were generated with the b2684 llama.cpp release.

Model Description

Stable LM 2 12B Chat is a 12 billion parameter instruction tuned language model trained on a mix of publicly available datasets and synthetic datasets, utilizing Direct Preference Optimization (DPO).

Example Usage via llama.cpp

Make sure to install release b2684 or later.

Download any of the available GGUF files. For example, using the Hugging Face Hub CLI:

pip install huggingface_hub[hf_transfer]
export HF_HUB_ENABLE_HF_TRANSFER=1
huggingface-cli download stabilityai/stablelm-2-12b-chat-GGUF stablelm-2-12b-chat-Q5_K_M.gguf --local-dir . --local-dir-use-symlinks False

Then run the model with the llama.cpp main program:

./main -m stablelm-2-12b-chat-Q5_K_M.gguf -p "<|im_start|>user {PROMPT} <|im_end|><|im_start|>assistant"

For interactive conversations, make sure to use ChatML formatting via the -cml flag:

./main -m stablelm-2-12b-chat-Q5_K_M.gguf -p {SYSTEM_PROMPT} -cml

Model Details

Training Dataset

The dataset is comprised of a mixture of open datasets large-scale datasets available on the HuggingFace Hub as well as an internal safety dataset:

  1. SFT Datasets
  • HuggingFaceH4/ultrachat_200k
  • meta-math/MetaMathQA
  • WizardLM/WizardLM_evol_instruct_V2_196k
  • Open-Orca/SlimOrca
  • openchat/openchat_sharegpt4_dataset
  • LDJnr/Capybara
  • hkust-nlp/deita-10k-v0
  • teknium/OpenHermes-2.5
  • glaiveai/glaive-function-calling-v2
  1. Safety Datasets:
  • Anthropic/hh-rlhf
  • Internal Safety Dataset
  1. Preference Datasets:
  • argilla/dpo-mix-7k

Performance

MT-Bench

Model Parameters MT Bench (Inflection-corrected)
mistralai/Mixtral-8x7B-Instruct-v0.1 13B/47B 8.48 ± 0.06
stabilityai/stablelm-2-12b-chat 12B 8.15 ± 0.08
Qwen/Qwen1.5-14B-Chat 14B 7.95 ± 0.10
HuggingFaceH4/zephyr-7b-gemma-v0.1 8.5B 7.82 ± 0.03
mistralai/Mistral-7B-Instruct-v0.2 7B 7.48 ± 0.02
meta-llama/Llama-2-70b-chat-hf 70B 7.29 ± 0.05

OpenLLM Leaderboard

Model Parameters Average ARC Challenge (25-shot) HellaSwag (10-shot) MMLU (5-shot) TruthfulQA (0-shot) Winogrande (5-shot) GSM8K (5-shot)
mistralai/Mixtral-8x7B-Instruct-v0.1 13B/47B 72.71 70.14 87.55 71.40 64.98 81.06 61.11
stabilityai/stablelm-2-12b-chat 12B 68.45 65.02 86.06 61.14 62.00 78.77 57.70
Qwen/Qwen1.5-14B 14B 66.70 56.57 81.08 69.36 52.06 73.48 67.63
mistralai/Mistral-7B-Instruct-v0.2 7B 65.71 63.14 84.88 60.78 60.26 77.19 40.03
HuggingFaceH4/zephyr-7b-gemma-v0.1 8.5B 62.41 58.45 83.48 60.68 52.07 74.19 45.56
Qwen/Qwen1.5-14B-Chat 14B 62.37 58.79 82.33 68.52 60.38 73.32 30.86
google/gemma-7b 8.5B 63.75 61.09 82.20 64.56 44.79 79.01 50.87
stabilityai/stablelm-2-12b 12B 63.53 58.45 84.33 62.09 48.16 78.10 56.03
mistralai/Mistral-7B-v0.1 7B 60.97 59.98 83.31 64.16 42.15 78.37 37.83
meta-llama/Llama-2-13b-hf 13B 55.69 59.39 82.13 55.77 37.38 76.64 22.82
meta-llama/Llama-2-13b-chat-hf 13B 54.92 59.04 81.94 54.64 41.12 74.51 15.24

Use and Limitations

Intended Use

The model is intended to be used in chat-like applications. Developers must evaluate the model for safety performance in their specific use case. Read more about safety and limitations below.

Limitations and Bias

We strongly recommend pairing this model with an input and output classifier to prevent harmful responses. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not hallucinations. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.

How to Cite

@article{bellagente2024stable,
  title={Stable LM 2 1.6 B Technical Report},
  author={Bellagente, Marco and Tow, Jonathan and Mahan, Dakota and Phung, Duy and Zhuravinskyi, Maksym and Adithyan, Reshinth and Baicoianu, James and Brooks, Ben and Cooper, Nathan and Datta, Ashish and others},
  journal={arXiv preprint arXiv:2402.17834},
  year={2024}
}
Downloads last month
169
GGUF
Model size
12.1B params
Architecture
stablelm

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Datasets used to train stabilityai/stablelm-2-12b-chat-GGUF