sentiment-analysis

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0940
  • Accuracy: 0.586

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.4 50 1.5942 0.401
No log 0.8 100 1.5160 0.4765
No log 1.2 150 1.3189 0.535
No log 1.6 200 1.2154 0.551
No log 2.0 250 1.1434 0.562
No log 2.4 300 1.1106 0.575
No log 2.8 350 1.0940 0.586

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
67M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for srinivasan-sridhar28/sentiment-analysis

Adapter
(228)
this model