e5 cogcache small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/e5-small-cogcachedata")
# Run inference
sentences = [
'How can I improve my Spanish?',
'How can I improve my English?',
'How can I lose weight?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
base
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8923 |
cosine_accuracy_threshold | 0.8427 |
cosine_f1 | 0.9167 |
cosine_f1_threshold | 0.8427 |
cosine_precision | 0.9167 |
cosine_recall | 0.9167 |
cosine_ap | 0.954 |
dot_accuracy | 0.8923 |
dot_accuracy_threshold | 0.8427 |
dot_f1 | 0.9167 |
dot_f1_threshold | 0.8427 |
dot_precision | 0.9167 |
dot_recall | 0.9167 |
dot_ap | 0.954 |
manhattan_accuracy | 0.8846 |
manhattan_accuracy_threshold | 10.0005 |
manhattan_f1 | 0.9143 |
manhattan_f1_threshold | 10.0005 |
manhattan_precision | 0.8791 |
manhattan_recall | 0.9524 |
manhattan_ap | 0.9534 |
euclidean_accuracy | 0.8923 |
euclidean_accuracy_threshold | 0.5608 |
euclidean_f1 | 0.9167 |
euclidean_f1_threshold | 0.5608 |
euclidean_precision | 0.9167 |
euclidean_recall | 0.9167 |
euclidean_ap | 0.954 |
max_accuracy | 0.8923 |
max_accuracy_threshold | 10.0005 |
max_f1 | 0.9167 |
max_f1_threshold | 10.0005 |
max_precision | 0.9167 |
max_recall | 0.9524 |
max_ap | 0.954 |
Binary Classification
- Dataset:
tuned
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8923 |
cosine_accuracy_threshold | 0.8427 |
cosine_f1 | 0.9167 |
cosine_f1_threshold | 0.8427 |
cosine_precision | 0.9167 |
cosine_recall | 0.9167 |
cosine_ap | 0.954 |
dot_accuracy | 0.8923 |
dot_accuracy_threshold | 0.8427 |
dot_f1 | 0.9167 |
dot_f1_threshold | 0.8427 |
dot_precision | 0.9167 |
dot_recall | 0.9167 |
dot_ap | 0.954 |
manhattan_accuracy | 0.8846 |
manhattan_accuracy_threshold | 10.0005 |
manhattan_f1 | 0.9143 |
manhattan_f1_threshold | 10.0005 |
manhattan_precision | 0.8791 |
manhattan_recall | 0.9524 |
manhattan_ap | 0.9534 |
euclidean_accuracy | 0.8923 |
euclidean_accuracy_threshold | 0.5608 |
euclidean_f1 | 0.9167 |
euclidean_f1_threshold | 0.5608 |
euclidean_precision | 0.9167 |
euclidean_recall | 0.9167 |
euclidean_ap | 0.954 |
max_accuracy | 0.8923 |
max_accuracy_threshold | 10.0005 |
max_f1 | 0.9167 |
max_f1_threshold | 10.0005 |
max_precision | 0.9167 |
max_recall | 0.9524 |
max_ap | 0.954 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,000 training samples
- Columns:
sentence2
,sentence1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 4 tokens
- mean: 13.29 tokens
- max: 55 tokens
- min: 6 tokens
- mean: 13.24 tokens
- max: 66 tokens
- 0: ~55.10%
- 1: ~44.90%
- Samples:
sentence2 sentence1 label What are the ingredients of a pizza
What are the ingredients of a pizza?
1
What are the ingredients of pizza
What are the ingredients of a pizza?
1
What are ingredients of pizza
What are the ingredients of a pizza?
1
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 130 evaluation samples
- Columns:
sentence2
,sentence1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence2 sentence1 label type string string int details - min: 5 tokens
- mean: 11.48 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 10.85 tokens
- max: 20 tokens
- 0: ~35.38%
- 1: ~64.62%
- Samples:
sentence2 sentence1 label What are the ingredients of a pizza
What are the ingredients of a pizza?
1
What are the ingredients of pizza
What are the ingredients of a pizza?
1
What are ingredients of pizza
What are the ingredients of a pizza?
1
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 6warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | base_max_ap | tuned_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 0.7430 | - |
1.0 | 125 | - | 0.5464 | 0.7914 | - |
2.0 | 250 | - | 0.2451 | 0.9018 | - |
3.0 | 375 | - | 0.1717 | 0.9460 | - |
4.0 | 500 | 0.24 | 0.1490 | 0.9532 | - |
5.0 | 625 | - | 0.1598 | 0.9523 | - |
6.0 | 750 | - | 0.1382 | 0.9540 | 0.9540 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for srikarvar/e5-small-cogcachedata
Base model
intfloat/multilingual-e5-smallEvaluation results
- Cosine Accuracy on baseself-reported0.892
- Cosine Accuracy Threshold on baseself-reported0.843
- Cosine F1 on baseself-reported0.917
- Cosine F1 Threshold on baseself-reported0.843
- Cosine Precision on baseself-reported0.917
- Cosine Recall on baseself-reported0.917
- Cosine Ap on baseself-reported0.954
- Dot Accuracy on baseself-reported0.892
- Dot Accuracy Threshold on baseself-reported0.843
- Dot F1 on baseself-reported0.917