srikarvar commited on
Commit
747cfc9
·
verified ·
1 Parent(s): 0747556

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy
8
+ - dot_accuracy
9
+ - manhattan_accuracy
10
+ - euclidean_accuracy
11
+ - max_accuracy
12
+ pipeline_tag: sentence-similarity
13
+ tags:
14
+ - sentence-transformers
15
+ - sentence-similarity
16
+ - feature-extraction
17
+ - generated_from_trainer
18
+ - dataset_size:1204
19
+ - loss:TripletLoss
20
+ widget:
21
+ - source_sentence: How do I publish articles?
22
+ sentences:
23
+ - How do I publish an article?
24
+ - Steps to meditate
25
+ - How I publish my article on Yahoo?
26
+ - source_sentence: Who is the author of '1984'?
27
+ sentences:
28
+ - North America's largest lake by area
29
+ - Writer of the novel '1984'
30
+ - Who is the author of 'Pride and Prejudice'?
31
+ - source_sentence: What are adverbs? What are some kind of adverbs?
32
+ sentences:
33
+ - How can I get rid of flying cockroaches?
34
+ - What are some examples of adverbs?
35
+ - What's the difference between adverbial phrase and adverb phrase?
36
+ - source_sentence: Do you believe in astrology? Is it true?
37
+ sentences:
38
+ - Are horoscopes legitimate? Do they ever come true?
39
+ - Today is my birthday. Why does no one wish me a happy birthday?
40
+ - Do you believe in horoscope?
41
+ - source_sentence: After marriage, why do women have to change their surnames to their
42
+ husband’s? Why can't they keep their maiden ones?
43
+ sentences:
44
+ - Steps to start a blog
45
+ - After marriage, why do women have to change their surname?
46
+ - Is it possible for an Indian woman not to change her surname after marriage?
47
+ model-index:
48
+ - name: SentenceTransformer based on intfloat/multilingual-e5-small
49
+ results:
50
+ - task:
51
+ type: triplet
52
+ name: Triplet
53
+ dataset:
54
+ name: triplet validation
55
+ type: triplet-validation
56
+ metrics:
57
+ - type: cosine_accuracy
58
+ value: 0.9917355371900827
59
+ name: Cosine Accuracy
60
+ - type: dot_accuracy
61
+ value: 0.008264462809917356
62
+ name: Dot Accuracy
63
+ - type: manhattan_accuracy
64
+ value: 0.9917355371900827
65
+ name: Manhattan Accuracy
66
+ - type: euclidean_accuracy
67
+ value: 0.9917355371900827
68
+ name: Euclidean Accuracy
69
+ - type: max_accuracy
70
+ value: 0.9917355371900827
71
+ name: Max Accuracy
72
+ ---
73
+
74
+ # SentenceTransformer based on intfloat/multilingual-e5-small
75
+
76
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
77
+
78
+ ## Model Details
79
+
80
+ ### Model Description
81
+ - **Model Type:** Sentence Transformer
82
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
83
+ - **Maximum Sequence Length:** 512 tokens
84
+ - **Output Dimensionality:** 384 tokens
85
+ - **Similarity Function:** Cosine Similarity
86
+ <!-- - **Training Dataset:** Unknown -->
87
+ <!-- - **Language:** Unknown -->
88
+ <!-- - **License:** Unknown -->
89
+
90
+ ### Model Sources
91
+
92
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
93
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
94
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
95
+
96
+ ### Full Model Architecture
97
+
98
+ ```
99
+ SentenceTransformer(
100
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
101
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
102
+ (2): Normalize()
103
+ )
104
+ ```
105
+
106
+ ## Usage
107
+
108
+ ### Direct Usage (Sentence Transformers)
109
+
110
+ First install the Sentence Transformers library:
111
+
112
+ ```bash
113
+ pip install -U sentence-transformers
114
+ ```
115
+
116
+ Then you can load this model and run inference.
117
+ ```python
118
+ from sentence_transformers import SentenceTransformer
119
+
120
+ # Download from the 🤗 Hub
121
+ model = SentenceTransformer("srikarvar/e-small-triplet-balanced")
122
+ # Run inference
123
+ sentences = [
124
+ "After marriage, why do women have to change their surnames to their husband’s? Why can't they keep their maiden ones?",
125
+ 'After marriage, why do women have to change their surname?',
126
+ 'Is it possible for an Indian woman not to change her surname after marriage?',
127
+ ]
128
+ embeddings = model.encode(sentences)
129
+ print(embeddings.shape)
130
+ # [3, 384]
131
+
132
+ # Get the similarity scores for the embeddings
133
+ similarities = model.similarity(embeddings, embeddings)
134
+ print(similarities.shape)
135
+ # [3, 3]
136
+ ```
137
+
138
+ <!--
139
+ ### Direct Usage (Transformers)
140
+
141
+ <details><summary>Click to see the direct usage in Transformers</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Downstream Usage (Sentence Transformers)
148
+
149
+ You can finetune this model on your own dataset.
150
+
151
+ <details><summary>Click to expand</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Out-of-Scope Use
158
+
159
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
160
+ -->
161
+
162
+ ## Evaluation
163
+
164
+ ### Metrics
165
+
166
+ #### Triplet
167
+ * Dataset: `triplet-validation`
168
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
169
+
170
+ | Metric | Value |
171
+ |:-------------------|:-----------|
172
+ | cosine_accuracy | 0.9917 |
173
+ | dot_accuracy | 0.0083 |
174
+ | manhattan_accuracy | 0.9917 |
175
+ | euclidean_accuracy | 0.9917 |
176
+ | **max_accuracy** | **0.9917** |
177
+
178
+ <!--
179
+ ## Bias, Risks and Limitations
180
+
181
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
182
+ -->
183
+
184
+ <!--
185
+ ### Recommendations
186
+
187
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
188
+ -->
189
+
190
+ ## Training Details
191
+
192
+ ### Training Dataset
193
+
194
+ #### Unnamed Dataset
195
+
196
+
197
+ * Size: 1,204 training samples
198
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
199
+ * Approximate statistics based on the first 1000 samples:
200
+ | | anchor | positive | negative |
201
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
202
+ | type | string | string | string |
203
+ | details | <ul><li>min: 6 tokens</li><li>mean: 12.25 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.44 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.68 tokens</li><li>max: 59 tokens</li></ul> |
204
+ * Samples:
205
+ | anchor | positive | negative |
206
+ |:--------------------------------------------------|:---------------------------------------------------|:---------------------------------------------------|
207
+ | <code>What are the ingredients of a pizza?</code> | <code>ingredients of pizza?</code> | <code>What are the ingredients of a burger?</code> |
208
+ | <code>How does photosynthesis work?</code> | <code>Explain the process of photosynthesis</code> | <code>How does respiration work?</code> |
209
+ | <code>How do I reset my password?</code> | <code>Steps to reset password</code> | <code>How do I change my username?</code> |
210
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
211
+ ```json
212
+ {
213
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
214
+ "triplet_margin": 5
215
+ }
216
+ ```
217
+
218
+ ### Evaluation Dataset
219
+
220
+ #### Unnamed Dataset
221
+
222
+
223
+ * Size: 121 evaluation samples
224
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
225
+ * Approximate statistics based on the first 1000 samples:
226
+ | | anchor | positive | negative |
227
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
228
+ | type | string | string | string |
229
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.83 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.77 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.2 tokens</li><li>max: 48 tokens</li></ul> |
230
+ * Samples:
231
+ | anchor | positive | negative |
232
+ |:-----------------------------------------------------------|:---------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|
233
+ | <code>What is the best way to learn a new language?</code> | <code>How can I effectively learn a new language?</code> | <code>What is the fastest way to travel?</code> |
234
+ | <code>Can people actively control their emotions?</code> | <code>Does our mind control our emotions?</code> | <code>How can I control my positive emotions for the people whom I love but they don't care about me?</code> |
235
+ | <code>Which can be the best laptop under 30000?</code> | <code>which laptop will be best under Rs 30,000?</code> | <code>What is the best phone to buy under 30000 in India?</code> |
236
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
237
+ ```json
238
+ {
239
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
240
+ "triplet_margin": 5
241
+ }
242
+ ```
243
+
244
+ ### Training Hyperparameters
245
+ #### Non-Default Hyperparameters
246
+
247
+ - `eval_strategy`: epoch
248
+ - `per_device_train_batch_size`: 32
249
+ - `per_device_eval_batch_size`: 32
250
+ - `gradient_accumulation_steps`: 2
251
+ - `learning_rate`: 3e-05
252
+ - `weight_decay`: 0.01
253
+ - `num_train_epochs`: 8
254
+ - `lr_scheduler_type`: reduce_lr_on_plateau
255
+ - `warmup_ratio`: 0.1
256
+ - `load_best_model_at_end`: True
257
+ - `optim`: adamw_torch_fused
258
+
259
+ #### All Hyperparameters
260
+ <details><summary>Click to expand</summary>
261
+
262
+ - `overwrite_output_dir`: False
263
+ - `do_predict`: False
264
+ - `eval_strategy`: epoch
265
+ - `prediction_loss_only`: True
266
+ - `per_device_train_batch_size`: 32
267
+ - `per_device_eval_batch_size`: 32
268
+ - `per_gpu_train_batch_size`: None
269
+ - `per_gpu_eval_batch_size`: None
270
+ - `gradient_accumulation_steps`: 2
271
+ - `eval_accumulation_steps`: None
272
+ - `learning_rate`: 3e-05
273
+ - `weight_decay`: 0.01
274
+ - `adam_beta1`: 0.9
275
+ - `adam_beta2`: 0.999
276
+ - `adam_epsilon`: 1e-08
277
+ - `max_grad_norm`: 1.0
278
+ - `num_train_epochs`: 8
279
+ - `max_steps`: -1
280
+ - `lr_scheduler_type`: reduce_lr_on_plateau
281
+ - `lr_scheduler_kwargs`: {}
282
+ - `warmup_ratio`: 0.1
283
+ - `warmup_steps`: 0
284
+ - `log_level`: passive
285
+ - `log_level_replica`: warning
286
+ - `log_on_each_node`: True
287
+ - `logging_nan_inf_filter`: True
288
+ - `save_safetensors`: True
289
+ - `save_on_each_node`: False
290
+ - `save_only_model`: False
291
+ - `restore_callback_states_from_checkpoint`: False
292
+ - `no_cuda`: False
293
+ - `use_cpu`: False
294
+ - `use_mps_device`: False
295
+ - `seed`: 42
296
+ - `data_seed`: None
297
+ - `jit_mode_eval`: False
298
+ - `use_ipex`: False
299
+ - `bf16`: False
300
+ - `fp16`: False
301
+ - `fp16_opt_level`: O1
302
+ - `half_precision_backend`: auto
303
+ - `bf16_full_eval`: False
304
+ - `fp16_full_eval`: False
305
+ - `tf32`: None
306
+ - `local_rank`: 0
307
+ - `ddp_backend`: None
308
+ - `tpu_num_cores`: None
309
+ - `tpu_metrics_debug`: False
310
+ - `debug`: []
311
+ - `dataloader_drop_last`: False
312
+ - `dataloader_num_workers`: 0
313
+ - `dataloader_prefetch_factor`: None
314
+ - `past_index`: -1
315
+ - `disable_tqdm`: False
316
+ - `remove_unused_columns`: True
317
+ - `label_names`: None
318
+ - `load_best_model_at_end`: True
319
+ - `ignore_data_skip`: False
320
+ - `fsdp`: []
321
+ - `fsdp_min_num_params`: 0
322
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
323
+ - `fsdp_transformer_layer_cls_to_wrap`: None
324
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
325
+ - `deepspeed`: None
326
+ - `label_smoothing_factor`: 0.0
327
+ - `optim`: adamw_torch_fused
328
+ - `optim_args`: None
329
+ - `adafactor`: False
330
+ - `group_by_length`: False
331
+ - `length_column_name`: length
332
+ - `ddp_find_unused_parameters`: None
333
+ - `ddp_bucket_cap_mb`: None
334
+ - `ddp_broadcast_buffers`: False
335
+ - `dataloader_pin_memory`: True
336
+ - `dataloader_persistent_workers`: False
337
+ - `skip_memory_metrics`: True
338
+ - `use_legacy_prediction_loop`: False
339
+ - `push_to_hub`: False
340
+ - `resume_from_checkpoint`: None
341
+ - `hub_model_id`: None
342
+ - `hub_strategy`: every_save
343
+ - `hub_private_repo`: False
344
+ - `hub_always_push`: False
345
+ - `gradient_checkpointing`: False
346
+ - `gradient_checkpointing_kwargs`: None
347
+ - `include_inputs_for_metrics`: False
348
+ - `eval_do_concat_batches`: True
349
+ - `fp16_backend`: auto
350
+ - `push_to_hub_model_id`: None
351
+ - `push_to_hub_organization`: None
352
+ - `mp_parameters`:
353
+ - `auto_find_batch_size`: False
354
+ - `full_determinism`: False
355
+ - `torchdynamo`: None
356
+ - `ray_scope`: last
357
+ - `ddp_timeout`: 1800
358
+ - `torch_compile`: False
359
+ - `torch_compile_backend`: None
360
+ - `torch_compile_mode`: None
361
+ - `dispatch_batches`: None
362
+ - `split_batches`: None
363
+ - `include_tokens_per_second`: False
364
+ - `include_num_input_tokens_seen`: False
365
+ - `neftune_noise_alpha`: None
366
+ - `optim_target_modules`: None
367
+ - `batch_eval_metrics`: False
368
+ - `batch_sampler`: batch_sampler
369
+ - `multi_dataset_batch_sampler`: proportional
370
+
371
+ </details>
372
+
373
+ ### Training Logs
374
+ | Epoch | Step | Training Loss | loss | triplet-validation_max_accuracy |
375
+ |:-------:|:-------:|:-------------:|:----------:|:-------------------------------:|
376
+ | 0.5263 | 10 | 4.8459 | - | - |
377
+ | 1.0 | 19 | - | 4.4155 | - |
378
+ | 1.0526 | 20 | 4.7205 | - | - |
379
+ | 1.5789 | 30 | 4.5948 | - | - |
380
+ | 2.0 | 38 | - | 4.2163 | - |
381
+ | 2.1053 | 40 | 4.5125 | - | - |
382
+ | 2.6316 | 50 | 4.4761 | - | - |
383
+ | 3.0 | 57 | - | 4.1338 | - |
384
+ | 3.1579 | 60 | 4.452 | - | - |
385
+ | 3.6842 | 70 | 4.4082 | - | - |
386
+ | 4.0 | 76 | - | 4.0659 | - |
387
+ | 4.2105 | 80 | 4.3978 | - | - |
388
+ | 4.7368 | 90 | 4.3495 | - | - |
389
+ | 5.0 | 95 | - | 4.0202 | - |
390
+ | 5.2632 | 100 | 4.287 | - | - |
391
+ | 5.7895 | 110 | 4.2805 | - | - |
392
+ | 6.0 | 114 | - | 3.9441 | - |
393
+ | 6.3158 | 120 | 4.2631 | - | - |
394
+ | 6.8421 | 130 | 4.213 | - | - |
395
+ | 7.0 | 133 | - | 3.8866 | - |
396
+ | 7.3684 | 140 | 4.1921 | - | - |
397
+ | 7.8947 | 150 | 4.1854 | - | - |
398
+ | **8.0** | **152** | **-** | **3.8757** | **0.9917** |
399
+
400
+ * The bold row denotes the saved checkpoint.
401
+
402
+ ### Framework Versions
403
+ - Python: 3.10.12
404
+ - Sentence Transformers: 3.0.1
405
+ - Transformers: 4.41.2
406
+ - PyTorch: 2.1.2+cu121
407
+ - Accelerate: 0.32.1
408
+ - Datasets: 2.19.1
409
+ - Tokenizers: 0.19.1
410
+
411
+ ## Citation
412
+
413
+ ### BibTeX
414
+
415
+ #### Sentence Transformers
416
+ ```bibtex
417
+ @inproceedings{reimers-2019-sentence-bert,
418
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
419
+ author = "Reimers, Nils and Gurevych, Iryna",
420
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
421
+ month = "11",
422
+ year = "2019",
423
+ publisher = "Association for Computational Linguistics",
424
+ url = "https://arxiv.org/abs/1908.10084",
425
+ }
426
+ ```
427
+
428
+ #### TripletLoss
429
+ ```bibtex
430
+ @misc{hermans2017defense,
431
+ title={In Defense of the Triplet Loss for Person Re-Identification},
432
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
433
+ year={2017},
434
+ eprint={1703.07737},
435
+ archivePrefix={arXiv},
436
+ primaryClass={cs.CV}
437
+ }
438
+ ```
439
+
440
+ <!--
441
+ ## Glossary
442
+
443
+ *Clearly define terms in order to be accessible across audiences.*
444
+ -->
445
+
446
+ <!--
447
+ ## Model Card Authors
448
+
449
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
450
+ -->
451
+
452
+ <!--
453
+ ## Model Card Contact
454
+
455
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
456
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ce12c173bb323daab4db4c7ed37b780117d9d5e4e82f547bfbbcc2ee66f3bbd
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }