SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/e-small-triplet-balanced")
# Run inference
sentences = [
"After marriage, why do women have to change their surnames to their husband’s? Why can't they keep their maiden ones?",
'After marriage, why do women have to change their surname?',
'Is it possible for an Indian woman not to change her surname after marriage?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
triplet-validation
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9917 |
dot_accuracy | 0.0083 |
manhattan_accuracy | 0.9917 |
euclidean_accuracy | 0.9917 |
max_accuracy | 0.9917 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,204 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 12.25 tokens
- max: 43 tokens
- min: 4 tokens
- mean: 11.44 tokens
- max: 50 tokens
- min: 4 tokens
- mean: 12.68 tokens
- max: 59 tokens
- Samples:
anchor positive negative What are the ingredients of a pizza?
ingredients of pizza?
What are the ingredients of a burger?
How does photosynthesis work?
Explain the process of photosynthesis
How does respiration work?
How do I reset my password?
Steps to reset password
How do I change my username?
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 121 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 12.83 tokens
- max: 38 tokens
- min: 6 tokens
- mean: 11.77 tokens
- max: 38 tokens
- min: 6 tokens
- mean: 13.2 tokens
- max: 48 tokens
- Samples:
anchor positive negative What is the best way to learn a new language?
How can I effectively learn a new language?
What is the fastest way to travel?
Can people actively control their emotions?
Does our mind control our emotions?
How can I control my positive emotions for the people whom I love but they don't care about me?
Which can be the best laptop under 30000?
which laptop will be best under Rs 30,000?
What is the best phone to buy under 30000 in India?
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2learning_rate
: 3e-05weight_decay
: 0.01num_train_epochs
: 8lr_scheduler_type
: reduce_lr_on_plateauwarmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fused
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 8max_steps
: -1lr_scheduler_type
: reduce_lr_on_plateaulr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | triplet-validation_max_accuracy |
---|---|---|---|---|
0.5263 | 10 | 4.8459 | - | - |
1.0 | 19 | - | 4.4155 | - |
1.0526 | 20 | 4.7205 | - | - |
1.5789 | 30 | 4.5948 | - | - |
2.0 | 38 | - | 4.2163 | - |
2.1053 | 40 | 4.5125 | - | - |
2.6316 | 50 | 4.4761 | - | - |
3.0 | 57 | - | 4.1338 | - |
3.1579 | 60 | 4.452 | - | - |
3.6842 | 70 | 4.4082 | - | - |
4.0 | 76 | - | 4.0659 | - |
4.2105 | 80 | 4.3978 | - | - |
4.7368 | 90 | 4.3495 | - | - |
5.0 | 95 | - | 4.0202 | - |
5.2632 | 100 | 4.287 | - | - |
5.7895 | 110 | 4.2805 | - | - |
6.0 | 114 | - | 3.9441 | - |
6.3158 | 120 | 4.2631 | - | - |
6.8421 | 130 | 4.213 | - | - |
7.0 | 133 | - | 3.8866 | - |
7.3684 | 140 | 4.1921 | - | - |
7.8947 | 150 | 4.1854 | - | - |
8.0 | 152 | - | 3.8757 | 0.9917 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for srikarvar/e-small-triplet-balanced
Base model
intfloat/multilingual-e5-smallEvaluation results
- Cosine Accuracy on triplet validationself-reported0.992
- Dot Accuracy on triplet validationself-reported0.008
- Manhattan Accuracy on triplet validationself-reported0.992
- Euclidean Accuracy on triplet validationself-reported0.992
- Max Accuracy on triplet validationself-reported0.992