|
from __future__ import annotations |
|
|
|
import gc |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import spaces |
|
import torch |
|
from controlnet_aux.util import HWC3 |
|
from diffusers import ( |
|
ControlNetModel, |
|
DiffusionPipeline, |
|
StableDiffusionControlNetPipeline, |
|
UniPCMultistepScheduler, |
|
) |
|
|
|
from cv_utils import resize_image |
|
from preprocessor import Preprocessor |
|
from settings import MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES |
|
|
|
CONTROLNET_MODEL_IDS = { |
|
"depth": "checkpoints/depth/controlnet", |
|
} |
|
|
|
|
|
def download_all_controlnet_weights() -> None: |
|
for model_id in CONTROLNET_MODEL_IDS.values(): |
|
ControlNetModel.from_pretrained(model_id) |
|
|
|
|
|
class Model: |
|
def __init__( |
|
self, |
|
base_model_id: str = "runwayml/stable-diffusion-v1-5", |
|
task_name: str = "depth", |
|
): |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
self.base_model_id = "" |
|
self.task_name = "" |
|
self.pipe = self.load_pipe(base_model_id, task_name) |
|
self.preprocessor = Preprocessor() |
|
|
|
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline: |
|
if ( |
|
base_model_id == self.base_model_id |
|
and task_name == self.task_name |
|
and hasattr(self, "pipe") |
|
and self.pipe is not None |
|
): |
|
return self.pipe |
|
model_id = CONTROLNET_MODEL_IDS[task_name] |
|
controlnet = ControlNetModel.from_pretrained( |
|
model_id, torch_dtype=torch.float32 |
|
) |
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
base_model_id, |
|
safety_checker=None, |
|
controlnet=controlnet, |
|
torch_dtype=torch.float32, |
|
) |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
pipe.to(self.device) |
|
|
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
self.base_model_id = base_model_id |
|
self.task_name = task_name |
|
return pipe |
|
|
|
def set_base_model(self, base_model_id: str) -> str: |
|
if not base_model_id or base_model_id == self.base_model_id: |
|
return self.base_model_id |
|
del self.pipe |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
try: |
|
self.pipe = self.load_pipe(base_model_id, self.task_name) |
|
except Exception: |
|
self.pipe = self.load_pipe(self.base_model_id, self.task_name) |
|
return self.base_model_id |
|
|
|
def load_controlnet_weight(self, task_name: str) -> None: |
|
if task_name == self.task_name: |
|
return |
|
if self.pipe is not None and hasattr(self.pipe, "controlnet"): |
|
del self.pipe.controlnet |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
model_id = CONTROLNET_MODEL_IDS[task_name] |
|
controlnet = ControlNetModel.from_pretrained( |
|
model_id, torch_dtype=torch.float32 |
|
) |
|
controlnet.to(self.device) |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
self.pipe.controlnet = controlnet |
|
self.task_name = task_name |
|
|
|
def get_prompt(self, prompt: str, additional_prompt: str) -> str: |
|
if not prompt: |
|
prompt = additional_prompt |
|
else: |
|
prompt = f"{prompt}, {additional_prompt}" |
|
return prompt |
|
|
|
@torch.autocast("cuda") |
|
def run_pipe( |
|
self, |
|
prompt: str, |
|
negative_prompt: str, |
|
control_image: PIL.Image.Image, |
|
num_images: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
) -> list[PIL.Image.Image]: |
|
self.pipe.to(self.device) |
|
self.pipe.controlnet.to(self.device) |
|
generator = torch.Generator().manual_seed(seed) |
|
return self.pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images, |
|
num_inference_steps=num_steps, |
|
generator=generator, |
|
image=control_image, |
|
).images |
|
|
|
@torch.no_grad() |
|
@spaces.GPU(enable_queue=True) |
|
def process_canny( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
low_threshold: int, |
|
high_threshold: int, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
self.preprocessor.load("Canny") |
|
control_image = self.preprocessor( |
|
image=image, |
|
low_threshold=low_threshold, |
|
high_threshold=high_threshold, |
|
detect_resolution=image_resolution, |
|
) |
|
|
|
self.load_controlnet_weight("Canny") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
conditions_of_generated_imgs = [ |
|
self.preprocessor( |
|
image=x, |
|
low_threshold=low_threshold, |
|
high_threshold=high_threshold, |
|
detect_resolution=image_resolution, |
|
) |
|
for x in results |
|
] |
|
return [control_image] * num_images + results + conditions_of_generated_imgs |
|
|
|
@torch.no_grad() |
|
@spaces.GPU(enable_queue=True) |
|
def process_softedge( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name == "None": |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
elif preprocessor_name in ["HED", "HED safe"]: |
|
safe = "safe" in preprocessor_name |
|
self.preprocessor.load("HED") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
scribble=safe, |
|
) |
|
elif preprocessor_name in ["PidiNet", "PidiNet safe"]: |
|
safe = "safe" in preprocessor_name |
|
self.preprocessor.load("PidiNet") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
safe=safe, |
|
) |
|
else: |
|
raise ValueError |
|
self.load_controlnet_weight("softedge") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
conditions_of_generated_imgs = [ |
|
self.preprocessor( |
|
image=x, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
scribble=safe, |
|
) |
|
for x in results |
|
] |
|
return [control_image] * num_images + results + conditions_of_generated_imgs |
|
|
|
@torch.no_grad() |
|
@spaces.GPU(enable_queue=True) |
|
def process_segmentation( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name == "None": |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
else: |
|
self.preprocessor.load(preprocessor_name) |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
) |
|
self.load_controlnet_weight("segmentation") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
self.preprocessor.load("UPerNet") |
|
conditions_of_generated_imgs = [ |
|
self.preprocessor( |
|
image=np.array(x), |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
) |
|
for x in results |
|
] |
|
return [control_image] * num_images + results + conditions_of_generated_imgs |
|
|
|
@torch.no_grad() |
|
@spaces.GPU(enable_queue=True) |
|
def process_depth( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name == "None": |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
else: |
|
self.preprocessor.load(preprocessor_name) |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
) |
|
self.load_controlnet_weight("depth") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
conditions_of_generated_imgs = [ |
|
self.preprocessor( |
|
image=x, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
) |
|
for x in results |
|
] |
|
return [control_image] * num_images + results + conditions_of_generated_imgs |
|
|
|
@torch.no_grad() |
|
@spaces.GPU(enable_queue=True) |
|
def process_lineart( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name in ["None", "None (anime)"]: |
|
image = 255 - HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
elif preprocessor_name in ["Lineart", "Lineart coarse"]: |
|
coarse = "coarse" in preprocessor_name |
|
self.preprocessor.load("Lineart") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
coarse=coarse, |
|
) |
|
elif preprocessor_name == "Lineart (anime)": |
|
self.preprocessor.load("LineartAnime") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
) |
|
|
|
if "anime" in preprocessor_name: |
|
self.load_controlnet_weight("lineart_anime") |
|
else: |
|
self.load_controlnet_weight("lineart") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
self.preprocessor.load("Lineart") |
|
conditions_of_generated_imgs = [ |
|
self.preprocessor( |
|
image=x, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
) |
|
for x in results |
|
] |
|
|
|
control_image = PIL.Image.fromarray( |
|
(255 - np.array(control_image)).astype(np.uint8) |
|
) |
|
conditions_of_generated_imgs = [ |
|
PIL.Image.fromarray((255 - np.array(x)).astype(np.uint8)) |
|
for x in conditions_of_generated_imgs |
|
] |
|
|
|
return [control_image] * num_images + results + conditions_of_generated_imgs |
|
|