zoanhy commited on
Commit
2b5ebe9
·
verified ·
1 Parent(s): 360f442

Upload 35 files

Browse files
.pre-commit-config.yaml ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v4.4.0
4
+ hooks:
5
+ - id: check-executables-have-shebangs
6
+ - id: check-json
7
+ - id: check-merge-conflict
8
+ - id: check-shebang-scripts-are-executable
9
+ - id: check-toml
10
+ - id: check-yaml
11
+ - id: end-of-file-fixer
12
+ - id: mixed-line-ending
13
+ args: ["--fix=lf"]
14
+ - id: requirements-txt-fixer
15
+ - id: trailing-whitespace
16
+ - repo: https://github.com/myint/docformatter
17
+ rev: v1.7.5
18
+ hooks:
19
+ - id: docformatter
20
+ args: ["--in-place"]
21
+ - repo: https://github.com/pycqa/isort
22
+ rev: 5.12.0
23
+ hooks:
24
+ - id: isort
25
+ args: ["--profile", "black"]
26
+ - repo: https://github.com/pre-commit/mirrors-mypy
27
+ rev: v1.5.1
28
+ hooks:
29
+ - id: mypy
30
+ args: ["--ignore-missing-imports"]
31
+ additional_dependencies:
32
+ ["types-python-slugify", "types-requests", "types-PyYAML"]
33
+ - repo: https://github.com/psf/black
34
+ rev: 23.9.1
35
+ hooks:
36
+ - id: black
37
+ language_version: python3.10
38
+ args: ["--line-length", "119"]
39
+ - repo: https://github.com/kynan/nbstripout
40
+ rev: 0.6.1
41
+ hooks:
42
+ - id: nbstripout
43
+ args:
44
+ [
45
+ "--extra-keys",
46
+ "metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
47
+ ]
48
+ - repo: https://github.com/nbQA-dev/nbQA
49
+ rev: 1.7.0
50
+ hooks:
51
+ - id: nbqa-black
52
+ - id: nbqa-pyupgrade
53
+ args: ["--py37-plus"]
54
+ - id: nbqa-isort
55
+ args: ["--float-to-top"]
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 hysts
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
LICENSE.ControlNet ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,12 +1,15 @@
1
  ---
2
- title: Demo Ctn
3
- emoji: 🏃
4
  colorFrom: yellow
5
  colorTo: green
6
  sdk: gradio
7
- sdk_version: 4.27.0
 
8
  app_file: app.py
9
  pinned: false
 
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: ControlNet++
3
+ emoji: 📉
4
  colorFrom: yellow
5
  colorTo: green
6
  sdk: gradio
7
+ sdk_version: 4.0.0
8
+ python_version: 3.10.13
9
  app_file: app.py
10
  pinned: false
11
+ license: mit
12
+ suggested_hardware: t4-medium
13
  ---
14
 
15
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from __future__ import annotations
4
+
5
+ import gradio as gr
6
+ import torch
7
+
8
+ torch.jit.script = lambda f: f
9
+ import spaces
10
+
11
+ from app_depth import create_demo as create_demo_depth
12
+ from model import Model
13
+ from settings import ALLOW_CHANGING_BASE_MODEL, DEFAULT_MODEL_ID, SHOW_DUPLICATE_BUTTON
14
+ from transformers.utils.hub import move_cache
15
+
16
+ move_cache()
17
+
18
+ DESCRIPTION = "# ControlNet"
19
+
20
+ if not torch.cuda.is_available():
21
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
22
+
23
+ model = Model(base_model_id=DEFAULT_MODEL_ID, task_name="depth")
24
+
25
+
26
+ with gr.Blocks(css="style.css") as demo:
27
+ gr.Markdown(DESCRIPTION)
28
+ gr.DuplicateButton(
29
+ value="Duplicate Space for private use",
30
+ elem_id="duplicate-button",
31
+ visible=SHOW_DUPLICATE_BUTTON,
32
+ )
33
+
34
+ with gr.Tabs():
35
+ with gr.TabItem("Depth"):
36
+ create_demo_depth(model.process_depth)
37
+
38
+ with gr.Accordion(label="Base model", open=False):
39
+ with gr.Row():
40
+ with gr.Column(scale=5):
41
+ current_base_model = gr.Text(label="Current base model")
42
+ with gr.Column(scale=1):
43
+ check_base_model_button = gr.Button("Check current base model")
44
+ with gr.Row():
45
+ with gr.Column(scale=5):
46
+ new_base_model_id = gr.Text(
47
+ label="New base model",
48
+ max_lines=1,
49
+ placeholder="runwayml/stable-diffusion-v1-5",
50
+ info="The base model must be compatible with Stable Diffusion v1.5.",
51
+ interactive=ALLOW_CHANGING_BASE_MODEL,
52
+ )
53
+ with gr.Column(scale=1):
54
+ change_base_model_button = gr.Button(
55
+ "Change base model", interactive=ALLOW_CHANGING_BASE_MODEL
56
+ )
57
+ if not ALLOW_CHANGING_BASE_MODEL:
58
+ gr.Markdown(
59
+ """The base model is not allowed to be changed in this Space so as not to slow down the demo, but it can be changed if you duplicate the Space."""
60
+ )
61
+
62
+ check_base_model_button.click(
63
+ fn=lambda: model.base_model_id,
64
+ outputs=current_base_model,
65
+ queue=False,
66
+ api_name="check_base_model",
67
+ )
68
+ gr.on(
69
+ triggers=[new_base_model_id.submit, change_base_model_button.click],
70
+ fn=model.set_base_model,
71
+ inputs=new_base_model_id,
72
+ outputs=current_base_model,
73
+ api_name=False,
74
+ )
75
+
76
+ if __name__ == "__main__":
77
+ demo.queue(max_size=20).launch()
app_depth.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ import gradio as gr
4
+
5
+ from settings import (
6
+ DEFAULT_IMAGE_RESOLUTION,
7
+ DEFAULT_NUM_IMAGES,
8
+ MAX_IMAGE_RESOLUTION,
9
+ MAX_NUM_IMAGES,
10
+ MAX_SEED,
11
+ )
12
+ from utils import randomize_seed_fn
13
+
14
+ examples = []
15
+
16
+
17
+ def create_demo(process):
18
+ with gr.Blocks() as demo:
19
+ with gr.Row():
20
+ with gr.Column():
21
+ image = gr.Image()
22
+ prompt = gr.Textbox(label="Prompt")
23
+ run_button = gr.Button("Run")
24
+ with gr.Accordion("Advanced options", open=False):
25
+ preprocessor_name = gr.Radio(
26
+ label="Preprocessor",
27
+ choices=["Midas", "DPT", "None"],
28
+ type="value",
29
+ value="DPT",
30
+ )
31
+ num_samples = gr.Slider(
32
+ label="Number of images",
33
+ minimum=1,
34
+ maximum=MAX_NUM_IMAGES,
35
+ value=DEFAULT_NUM_IMAGES,
36
+ step=1,
37
+ )
38
+ image_resolution = gr.Slider(
39
+ label="Image resolution",
40
+ minimum=256,
41
+ maximum=MAX_IMAGE_RESOLUTION,
42
+ value=DEFAULT_IMAGE_RESOLUTION,
43
+ step=256,
44
+ )
45
+ preprocess_resolution = gr.Slider(
46
+ label="Preprocess resolution",
47
+ minimum=128,
48
+ maximum=512,
49
+ value=384,
50
+ step=1,
51
+ )
52
+ num_steps = gr.Slider(
53
+ label="Number of steps",
54
+ minimum=1,
55
+ maximum=100,
56
+ value=20,
57
+ step=1,
58
+ )
59
+ guidance_scale = gr.Slider(
60
+ label="Guidance scale",
61
+ minimum=0.1,
62
+ maximum=30.0,
63
+ value=7.5,
64
+ step=0.1,
65
+ )
66
+ seed = gr.Slider(
67
+ label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0
68
+ )
69
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
70
+ a_prompt = gr.Textbox(
71
+ label="Additional prompt",
72
+ value="high-quality, extremely detailed, 4K",
73
+ )
74
+ n_prompt = gr.Textbox(
75
+ label="Negative prompt",
76
+ value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
77
+ )
78
+ with gr.Column():
79
+ result = gr.Gallery(
80
+ label="Output", show_label=False, columns=2, object_fit="scale-down"
81
+ )
82
+
83
+ gr.Examples(
84
+ examples=examples,
85
+ inputs=[
86
+ image,
87
+ prompt,
88
+ guidance_scale,
89
+ seed,
90
+ ],
91
+ outputs=result,
92
+ fn=process,
93
+ )
94
+
95
+ inputs = [
96
+ image,
97
+ prompt,
98
+ a_prompt,
99
+ n_prompt,
100
+ num_samples,
101
+ image_resolution,
102
+ preprocess_resolution,
103
+ num_steps,
104
+ guidance_scale,
105
+ seed,
106
+ preprocessor_name,
107
+ ]
108
+ prompt.submit(
109
+ fn=randomize_seed_fn,
110
+ inputs=[seed, randomize_seed],
111
+ outputs=seed,
112
+ queue=False,
113
+ api_name=False,
114
+ ).then(
115
+ fn=process,
116
+ inputs=inputs,
117
+ outputs=result,
118
+ api_name=False,
119
+ )
120
+ run_button.click(
121
+ fn=randomize_seed_fn,
122
+ inputs=[seed, randomize_seed],
123
+ outputs=seed,
124
+ queue=False,
125
+ api_name=False,
126
+ ).then(
127
+ fn=process,
128
+ inputs=inputs,
129
+ outputs=result,
130
+ api_name="depth",
131
+ )
132
+ return demo
133
+
134
+
135
+ if __name__ == "__main__":
136
+ from model import Model
137
+
138
+ model = Model(task_name="depth")
139
+ demo = create_demo(model.process_depth)
140
+ demo.queue().launch()
app_openpose.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ import gradio as gr
4
+
5
+ from settings import (
6
+ DEFAULT_IMAGE_RESOLUTION,
7
+ DEFAULT_NUM_IMAGES,
8
+ MAX_IMAGE_RESOLUTION,
9
+ MAX_NUM_IMAGES,
10
+ MAX_SEED,
11
+ )
12
+ from utils import randomize_seed_fn
13
+
14
+
15
+ def create_demo(process):
16
+ with gr.Blocks() as demo:
17
+ with gr.Row():
18
+ with gr.Column():
19
+ image = gr.Image()
20
+ prompt = gr.Textbox(label="Prompt")
21
+ run_button = gr.Button(label="Run")
22
+ with gr.Accordion("Advanced options", open=False):
23
+ preprocessor_name = gr.Radio(
24
+ label="Preprocessor", choices=["Openpose", "None"], type="value", value="Openpose"
25
+ )
26
+ num_samples = gr.Slider(
27
+ label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1
28
+ )
29
+ image_resolution = gr.Slider(
30
+ label="Image resolution",
31
+ minimum=256,
32
+ maximum=MAX_IMAGE_RESOLUTION,
33
+ value=DEFAULT_IMAGE_RESOLUTION,
34
+ step=256,
35
+ )
36
+ preprocess_resolution = gr.Slider(
37
+ label="Preprocess resolution", minimum=128, maximum=512, value=512, step=1
38
+ )
39
+ num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
40
+ guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
41
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
42
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
43
+ a_prompt = gr.Textbox(label="Additional prompt", value="high-quality, extremely detailed, 4K")
44
+ n_prompt = gr.Textbox(
45
+ label="Negative prompt",
46
+ value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
47
+ )
48
+ with gr.Column():
49
+ result = gr.Gallery(label="Output", show_label=False, columns=2, object_fit="scale-down")
50
+ inputs = [
51
+ image,
52
+ prompt,
53
+ a_prompt,
54
+ n_prompt,
55
+ num_samples,
56
+ image_resolution,
57
+ preprocess_resolution,
58
+ num_steps,
59
+ guidance_scale,
60
+ seed,
61
+ preprocessor_name,
62
+ ]
63
+ prompt.submit(
64
+ fn=randomize_seed_fn,
65
+ inputs=[seed, randomize_seed],
66
+ outputs=seed,
67
+ queue=False,
68
+ api_name=False,
69
+ ).then(
70
+ fn=process,
71
+ inputs=inputs,
72
+ outputs=result,
73
+ api_name=False,
74
+ )
75
+ run_button.click(
76
+ fn=randomize_seed_fn,
77
+ inputs=[seed, randomize_seed],
78
+ outputs=seed,
79
+ queue=False,
80
+ api_name=False,
81
+ ).then(
82
+ fn=process,
83
+ inputs=inputs,
84
+ outputs=result,
85
+ api_name="openpose",
86
+ )
87
+ return demo
88
+
89
+
90
+ if __name__ == "__main__":
91
+ from model import Model
92
+
93
+ model = Model(task_name="Openpose")
94
+ demo = create_demo(model.process_openpose)
95
+ demo.queue().launch()
checkpoints/depth/controlnet/config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "ControlNetModel",
3
+ "_diffusers_version": "0.26.3",
4
+ "_name_or_path": "work_dirs/finetune/MultiGen20M_depth/ft_controlnet_sd15_depth_res512_bs256_lr1e-5_warmup100_iter5k_fp16ft0-200/checkpoint-5000",
5
+ "act_fn": "silu",
6
+ "addition_embed_type": null,
7
+ "addition_embed_type_num_heads": 64,
8
+ "addition_time_embed_dim": null,
9
+ "attention_head_dim": 8,
10
+ "block_out_channels": [
11
+ 320,
12
+ 640,
13
+ 1280,
14
+ 1280
15
+ ],
16
+ "class_embed_type": null,
17
+ "conditioning_channels": 3,
18
+ "conditioning_embedding_out_channels": [
19
+ 16,
20
+ 32,
21
+ 96,
22
+ 256
23
+ ],
24
+ "controlnet_conditioning_channel_order": "rgb",
25
+ "cross_attention_dim": 768,
26
+ "down_block_types": [
27
+ "CrossAttnDownBlock2D",
28
+ "CrossAttnDownBlock2D",
29
+ "CrossAttnDownBlock2D",
30
+ "DownBlock2D"
31
+ ],
32
+ "downsample_padding": 1,
33
+ "encoder_hid_dim": null,
34
+ "encoder_hid_dim_type": null,
35
+ "flip_sin_to_cos": true,
36
+ "freq_shift": 0,
37
+ "global_pool_conditions": false,
38
+ "in_channels": 4,
39
+ "layers_per_block": 2,
40
+ "mid_block_scale_factor": 1,
41
+ "mid_block_type": "UNetMidBlock2DCrossAttn",
42
+ "norm_eps": 1e-05,
43
+ "norm_num_groups": 32,
44
+ "num_attention_heads": null,
45
+ "num_class_embeds": null,
46
+ "only_cross_attention": false,
47
+ "projection_class_embeddings_input_dim": null,
48
+ "resnet_time_scale_shift": "default",
49
+ "transformer_layers_per_block": 1,
50
+ "upcast_attention": false,
51
+ "use_linear_projection": false
52
+ }
checkpoints/depth/controlnet/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7450404d13ef888c9701433a3c17b2a86c021a6d042f9f5d2519602abd7f2f3
3
+ size 1445157120
cv_utils.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+
5
+ def resize_image(input_image, resolution, interpolation=None):
6
+ H, W, C = input_image.shape
7
+ H = float(H)
8
+ W = float(W)
9
+ k = float(resolution) / max(H, W)
10
+ H *= k
11
+ W *= k
12
+ H = int(np.round(H / 64.0)) * 64
13
+ W = int(np.round(W / 64.0)) * 64
14
+ if interpolation is None:
15
+ interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA
16
+ img = cv2.resize(input_image, (W, H), interpolation=interpolation)
17
+ return img
depth_estimator.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import PIL.Image
3
+ from controlnet_aux.util import HWC3
4
+ from transformers import pipeline
5
+
6
+ from cv_utils import resize_image
7
+
8
+
9
+ class DepthEstimator:
10
+ def __init__(self):
11
+ self.model = pipeline("depth-estimation")
12
+
13
+ def __call__(self, image: np.ndarray, **kwargs) -> PIL.Image.Image:
14
+ detect_resolution = kwargs.pop("detect_resolution", 512)
15
+ image_resolution = kwargs.pop("image_resolution", 512)
16
+ image = np.array(image)
17
+ image = HWC3(image)
18
+ image = resize_image(image, resolution=detect_resolution)
19
+ image = PIL.Image.fromarray(image)
20
+ image = self.model(image)
21
+ image = image["depth"]
22
+ image = np.array(image)
23
+ image = HWC3(image)
24
+ image = resize_image(image, resolution=image_resolution)
25
+ return PIL.Image.fromarray(image)
image_segmentor.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import PIL.Image
4
+ import torch
5
+ from controlnet_aux.util import HWC3, ade_palette
6
+ from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
7
+
8
+ from cv_utils import resize_image
9
+
10
+
11
+ class ImageSegmentor:
12
+ def __init__(self):
13
+ self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
14
+ self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
15
+
16
+ @torch.no_grad()
17
+ def __call__(self, image: np.ndarray, **kwargs) -> PIL.Image.Image:
18
+ detect_resolution = kwargs.pop("detect_resolution", 512)
19
+ image_resolution = kwargs.pop("image_resolution", 512)
20
+ image = HWC3(image)
21
+ image = resize_image(image, resolution=detect_resolution)
22
+ image = PIL.Image.fromarray(image)
23
+
24
+ pixel_values = self.image_processor(image, return_tensors="pt").pixel_values
25
+ outputs = self.image_segmentor(pixel_values)
26
+ seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
27
+ color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
28
+ for label, color in enumerate(ade_palette()):
29
+ color_seg[seg == label, :] = color
30
+ color_seg = color_seg.astype(np.uint8)
31
+
32
+ color_seg = resize_image(color_seg, resolution=image_resolution, interpolation=cv2.INTER_NEAREST)
33
+ return PIL.Image.fromarray(color_seg)
images/canny/canny_demo.jpg ADDED
images/canny/canny_demo2.jpg ADDED
images/canny/canny_demo3.jpg ADDED
images/depth/depth_demo.png ADDED
images/depth/depth_demo2.png ADDED
images/depth/depth_demo3.jpg ADDED
images/hed/hed_demo.jpeg ADDED
images/hed/hed_demo2.jpg ADDED
images/hed/hed_demo3.jpg ADDED
images/lineart/Ryan Reynolds_1.png ADDED
images/lineart/Ryan Reynolds_2.png ADDED
images/lineart/Ryan Reynolds_3.png ADDED
images/lineart/tube.jpg ADDED
images/seg/143.png ADDED
images/seg/33.png ADDED
images/seg/seg_demo.png ADDED
model.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import gc
4
+
5
+ import numpy as np
6
+ import PIL.Image
7
+ import spaces
8
+ import torch
9
+ from controlnet_aux.util import HWC3
10
+ from diffusers import (
11
+ ControlNetModel,
12
+ DiffusionPipeline,
13
+ StableDiffusionControlNetPipeline,
14
+ UniPCMultistepScheduler,
15
+ )
16
+
17
+ from cv_utils import resize_image
18
+ from preprocessor import Preprocessor
19
+ from settings import MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES
20
+
21
+ CONTROLNET_MODEL_IDS = {
22
+ "depth": "checkpoints/depth/controlnet",
23
+ }
24
+
25
+
26
+ def download_all_controlnet_weights() -> None:
27
+ for model_id in CONTROLNET_MODEL_IDS.values():
28
+ ControlNetModel.from_pretrained(model_id)
29
+
30
+
31
+ class Model:
32
+ def __init__(
33
+ self,
34
+ base_model_id: str = "runwayml/stable-diffusion-v1-5",
35
+ task_name: str = "depth",
36
+ ):
37
+ self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
38
+ self.base_model_id = ""
39
+ self.task_name = ""
40
+ self.pipe = self.load_pipe(base_model_id, task_name)
41
+ self.preprocessor = Preprocessor()
42
+
43
+ def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline:
44
+ if (
45
+ base_model_id == self.base_model_id
46
+ and task_name == self.task_name
47
+ and hasattr(self, "pipe")
48
+ and self.pipe is not None
49
+ ):
50
+ return self.pipe
51
+ model_id = CONTROLNET_MODEL_IDS[task_name]
52
+ controlnet = ControlNetModel.from_pretrained(
53
+ model_id, torch_dtype=torch.float32
54
+ )
55
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
56
+ base_model_id,
57
+ safety_checker=None,
58
+ controlnet=controlnet,
59
+ torch_dtype=torch.float32,
60
+ )
61
+ pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
62
+ # if self.device.type == "cuda":
63
+ # pipe.disable_xformers_memory_efficient_attention()
64
+ pipe.to(self.device)
65
+
66
+ torch.cuda.empty_cache()
67
+ gc.collect()
68
+ self.base_model_id = base_model_id
69
+ self.task_name = task_name
70
+ return pipe
71
+
72
+ def set_base_model(self, base_model_id: str) -> str:
73
+ if not base_model_id or base_model_id == self.base_model_id:
74
+ return self.base_model_id
75
+ del self.pipe
76
+ torch.cuda.empty_cache()
77
+ gc.collect()
78
+ try:
79
+ self.pipe = self.load_pipe(base_model_id, self.task_name)
80
+ except Exception:
81
+ self.pipe = self.load_pipe(self.base_model_id, self.task_name)
82
+ return self.base_model_id
83
+
84
+ def load_controlnet_weight(self, task_name: str) -> None:
85
+ if task_name == self.task_name:
86
+ return
87
+ if self.pipe is not None and hasattr(self.pipe, "controlnet"):
88
+ del self.pipe.controlnet
89
+ torch.cuda.empty_cache()
90
+ gc.collect()
91
+ model_id = CONTROLNET_MODEL_IDS[task_name]
92
+ controlnet = ControlNetModel.from_pretrained(
93
+ model_id, torch_dtype=torch.float32
94
+ )
95
+ controlnet.to(self.device)
96
+ torch.cuda.empty_cache()
97
+ gc.collect()
98
+ self.pipe.controlnet = controlnet
99
+ self.task_name = task_name
100
+
101
+ def get_prompt(self, prompt: str, additional_prompt: str) -> str:
102
+ if not prompt:
103
+ prompt = additional_prompt
104
+ else:
105
+ prompt = f"{prompt}, {additional_prompt}"
106
+ return prompt
107
+
108
+ @torch.autocast("cuda")
109
+ def run_pipe(
110
+ self,
111
+ prompt: str,
112
+ negative_prompt: str,
113
+ control_image: PIL.Image.Image,
114
+ num_images: int,
115
+ num_steps: int,
116
+ guidance_scale: float,
117
+ seed: int,
118
+ ) -> list[PIL.Image.Image]:
119
+ self.pipe.to(self.device)
120
+ self.pipe.controlnet.to(self.device)
121
+ generator = torch.Generator().manual_seed(seed)
122
+ return self.pipe(
123
+ prompt=prompt,
124
+ negative_prompt=negative_prompt,
125
+ guidance_scale=guidance_scale,
126
+ num_images_per_prompt=num_images,
127
+ num_inference_steps=num_steps,
128
+ generator=generator,
129
+ image=control_image,
130
+ ).images
131
+
132
+ @torch.no_grad()
133
+ @spaces.GPU(enable_queue=True)
134
+ def process_canny(
135
+ self,
136
+ image: np.ndarray,
137
+ prompt: str,
138
+ additional_prompt: str,
139
+ negative_prompt: str,
140
+ num_images: int,
141
+ image_resolution: int,
142
+ num_steps: int,
143
+ guidance_scale: float,
144
+ seed: int,
145
+ low_threshold: int,
146
+ high_threshold: int,
147
+ ) -> list[PIL.Image.Image]:
148
+ if image is None:
149
+ raise ValueError
150
+ if image_resolution > MAX_IMAGE_RESOLUTION:
151
+ raise ValueError
152
+ if num_images > MAX_NUM_IMAGES:
153
+ raise ValueError
154
+
155
+ self.preprocessor.load("Canny")
156
+ control_image = self.preprocessor(
157
+ image=image,
158
+ low_threshold=low_threshold,
159
+ high_threshold=high_threshold,
160
+ detect_resolution=image_resolution,
161
+ )
162
+
163
+ self.load_controlnet_weight("Canny")
164
+ results = self.run_pipe(
165
+ prompt=self.get_prompt(prompt, additional_prompt),
166
+ negative_prompt=negative_prompt,
167
+ control_image=control_image,
168
+ num_images=num_images,
169
+ num_steps=num_steps,
170
+ guidance_scale=guidance_scale,
171
+ seed=seed,
172
+ )
173
+ conditions_of_generated_imgs = [
174
+ self.preprocessor(
175
+ image=x,
176
+ low_threshold=low_threshold,
177
+ high_threshold=high_threshold,
178
+ detect_resolution=image_resolution,
179
+ )
180
+ for x in results
181
+ ]
182
+ return [control_image] * num_images + results + conditions_of_generated_imgs
183
+
184
+ @torch.no_grad()
185
+ @spaces.GPU(enable_queue=True)
186
+ def process_softedge(
187
+ self,
188
+ image: np.ndarray,
189
+ prompt: str,
190
+ additional_prompt: str,
191
+ negative_prompt: str,
192
+ num_images: int,
193
+ image_resolution: int,
194
+ preprocess_resolution: int,
195
+ num_steps: int,
196
+ guidance_scale: float,
197
+ seed: int,
198
+ preprocessor_name: str,
199
+ ) -> list[PIL.Image.Image]:
200
+ if image is None:
201
+ raise ValueError
202
+ if image_resolution > MAX_IMAGE_RESOLUTION:
203
+ raise ValueError
204
+ if num_images > MAX_NUM_IMAGES:
205
+ raise ValueError
206
+
207
+ if preprocessor_name == "None":
208
+ image = HWC3(image)
209
+ image = resize_image(image, resolution=image_resolution)
210
+ control_image = PIL.Image.fromarray(image)
211
+ elif preprocessor_name in ["HED", "HED safe"]:
212
+ safe = "safe" in preprocessor_name
213
+ self.preprocessor.load("HED")
214
+ control_image = self.preprocessor(
215
+ image=image,
216
+ image_resolution=image_resolution,
217
+ detect_resolution=preprocess_resolution,
218
+ scribble=safe,
219
+ )
220
+ elif preprocessor_name in ["PidiNet", "PidiNet safe"]:
221
+ safe = "safe" in preprocessor_name
222
+ self.preprocessor.load("PidiNet")
223
+ control_image = self.preprocessor(
224
+ image=image,
225
+ image_resolution=image_resolution,
226
+ detect_resolution=preprocess_resolution,
227
+ safe=safe,
228
+ )
229
+ else:
230
+ raise ValueError
231
+ self.load_controlnet_weight("softedge")
232
+ results = self.run_pipe(
233
+ prompt=self.get_prompt(prompt, additional_prompt),
234
+ negative_prompt=negative_prompt,
235
+ control_image=control_image,
236
+ num_images=num_images,
237
+ num_steps=num_steps,
238
+ guidance_scale=guidance_scale,
239
+ seed=seed,
240
+ )
241
+ conditions_of_generated_imgs = [
242
+ self.preprocessor(
243
+ image=x,
244
+ image_resolution=image_resolution,
245
+ detect_resolution=preprocess_resolution,
246
+ scribble=safe,
247
+ )
248
+ for x in results
249
+ ]
250
+ return [control_image] * num_images + results + conditions_of_generated_imgs
251
+
252
+ @torch.no_grad()
253
+ @spaces.GPU(enable_queue=True)
254
+ def process_segmentation(
255
+ self,
256
+ image: np.ndarray,
257
+ prompt: str,
258
+ additional_prompt: str,
259
+ negative_prompt: str,
260
+ num_images: int,
261
+ image_resolution: int,
262
+ preprocess_resolution: int,
263
+ num_steps: int,
264
+ guidance_scale: float,
265
+ seed: int,
266
+ preprocessor_name: str,
267
+ ) -> list[PIL.Image.Image]:
268
+ if image is None:
269
+ raise ValueError
270
+ if image_resolution > MAX_IMAGE_RESOLUTION:
271
+ raise ValueError
272
+ if num_images > MAX_NUM_IMAGES:
273
+ raise ValueError
274
+
275
+ if preprocessor_name == "None":
276
+ image = HWC3(image)
277
+ image = resize_image(image, resolution=image_resolution)
278
+ control_image = PIL.Image.fromarray(image)
279
+ else:
280
+ self.preprocessor.load(preprocessor_name)
281
+ control_image = self.preprocessor(
282
+ image=image,
283
+ image_resolution=image_resolution,
284
+ detect_resolution=preprocess_resolution,
285
+ )
286
+ self.load_controlnet_weight("segmentation")
287
+ results = self.run_pipe(
288
+ prompt=self.get_prompt(prompt, additional_prompt),
289
+ negative_prompt=negative_prompt,
290
+ control_image=control_image,
291
+ num_images=num_images,
292
+ num_steps=num_steps,
293
+ guidance_scale=guidance_scale,
294
+ seed=seed,
295
+ )
296
+ self.preprocessor.load("UPerNet")
297
+ conditions_of_generated_imgs = [
298
+ self.preprocessor(
299
+ image=np.array(x),
300
+ image_resolution=image_resolution,
301
+ detect_resolution=preprocess_resolution,
302
+ )
303
+ for x in results
304
+ ]
305
+ return [control_image] * num_images + results + conditions_of_generated_imgs
306
+
307
+ @torch.no_grad()
308
+ @spaces.GPU(enable_queue=True)
309
+ def process_depth(
310
+ self,
311
+ image: np.ndarray,
312
+ prompt: str,
313
+ additional_prompt: str,
314
+ negative_prompt: str,
315
+ num_images: int,
316
+ image_resolution: int,
317
+ preprocess_resolution: int,
318
+ num_steps: int,
319
+ guidance_scale: float,
320
+ seed: int,
321
+ preprocessor_name: str,
322
+ ) -> list[PIL.Image.Image]:
323
+ if image is None:
324
+ raise ValueError
325
+ if image_resolution > MAX_IMAGE_RESOLUTION:
326
+ raise ValueError
327
+ if num_images > MAX_NUM_IMAGES:
328
+ raise ValueError
329
+
330
+ if preprocessor_name == "None":
331
+ image = HWC3(image)
332
+ image = resize_image(image, resolution=image_resolution)
333
+ control_image = PIL.Image.fromarray(image)
334
+ else:
335
+ self.preprocessor.load(preprocessor_name)
336
+ control_image = self.preprocessor(
337
+ image=image,
338
+ image_resolution=image_resolution,
339
+ detect_resolution=preprocess_resolution,
340
+ )
341
+ self.load_controlnet_weight("depth")
342
+ results = self.run_pipe(
343
+ prompt=self.get_prompt(prompt, additional_prompt),
344
+ negative_prompt=negative_prompt,
345
+ control_image=control_image,
346
+ num_images=num_images,
347
+ num_steps=num_steps,
348
+ guidance_scale=guidance_scale,
349
+ seed=seed,
350
+ )
351
+ conditions_of_generated_imgs = [
352
+ self.preprocessor(
353
+ image=x,
354
+ image_resolution=image_resolution,
355
+ detect_resolution=preprocess_resolution,
356
+ )
357
+ for x in results
358
+ ]
359
+ return [control_image] * num_images + results + conditions_of_generated_imgs
360
+
361
+ @torch.no_grad()
362
+ @spaces.GPU(enable_queue=True)
363
+ def process_lineart(
364
+ self,
365
+ image: np.ndarray,
366
+ prompt: str,
367
+ additional_prompt: str,
368
+ negative_prompt: str,
369
+ num_images: int,
370
+ image_resolution: int,
371
+ preprocess_resolution: int,
372
+ num_steps: int,
373
+ guidance_scale: float,
374
+ seed: int,
375
+ preprocessor_name: str,
376
+ ) -> list[PIL.Image.Image]:
377
+ if image is None:
378
+ raise ValueError
379
+ if image_resolution > MAX_IMAGE_RESOLUTION:
380
+ raise ValueError
381
+ if num_images > MAX_NUM_IMAGES:
382
+ raise ValueError
383
+
384
+ if preprocessor_name in ["None", "None (anime)"]:
385
+ image = 255 - HWC3(image)
386
+ image = resize_image(image, resolution=image_resolution)
387
+ control_image = PIL.Image.fromarray(image)
388
+ elif preprocessor_name in ["Lineart", "Lineart coarse"]:
389
+ coarse = "coarse" in preprocessor_name
390
+ self.preprocessor.load("Lineart")
391
+ control_image = self.preprocessor(
392
+ image=image,
393
+ image_resolution=image_resolution,
394
+ detect_resolution=preprocess_resolution,
395
+ coarse=coarse,
396
+ )
397
+ elif preprocessor_name == "Lineart (anime)":
398
+ self.preprocessor.load("LineartAnime")
399
+ control_image = self.preprocessor(
400
+ image=image,
401
+ image_resolution=image_resolution,
402
+ detect_resolution=preprocess_resolution,
403
+ )
404
+ # NOTE: We still use the general lineart model
405
+ if "anime" in preprocessor_name:
406
+ self.load_controlnet_weight("lineart_anime")
407
+ else:
408
+ self.load_controlnet_weight("lineart")
409
+ results = self.run_pipe(
410
+ prompt=self.get_prompt(prompt, additional_prompt),
411
+ negative_prompt=negative_prompt,
412
+ control_image=control_image,
413
+ num_images=num_images,
414
+ num_steps=num_steps,
415
+ guidance_scale=guidance_scale,
416
+ seed=seed,
417
+ )
418
+ self.preprocessor.load("Lineart")
419
+ conditions_of_generated_imgs = [
420
+ self.preprocessor(
421
+ image=x,
422
+ image_resolution=image_resolution,
423
+ detect_resolution=preprocess_resolution,
424
+ )
425
+ for x in results
426
+ ]
427
+
428
+ control_image = PIL.Image.fromarray(
429
+ (255 - np.array(control_image)).astype(np.uint8)
430
+ )
431
+ conditions_of_generated_imgs = [
432
+ PIL.Image.fromarray((255 - np.array(x)).astype(np.uint8))
433
+ for x in conditions_of_generated_imgs
434
+ ]
435
+
436
+ return [control_image] * num_images + results + conditions_of_generated_imgs
notebooks/notebook.ipynb ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "id": "8CnkIPtjn8Dc"
8
+ },
9
+ "outputs": [],
10
+ "source": [
11
+ "!git clone --recursive https://huggingface.co/spaces/hysts/ControlNet-v1-1\n",
12
+ "%cd ControlNet-v1-1\n",
13
+ "%pip install -q -r requirements.txt"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "metadata": {
20
+ "id": "GOfGng5Woktd"
21
+ },
22
+ "outputs": [],
23
+ "source": [
24
+ "from app import demo\n",
25
+ "\n",
26
+ "demo.queue().launch()"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": null,
32
+ "metadata": {
33
+ "id": "7Cued230ol7T"
34
+ },
35
+ "outputs": [],
36
+ "source": []
37
+ }
38
+ ],
39
+ "metadata": {
40
+ "accelerator": "GPU",
41
+ "colab": {
42
+ "provenance": []
43
+ },
44
+ "gpuClass": "standard",
45
+ "language_info": {
46
+ "name": "python"
47
+ }
48
+ },
49
+ "nbformat": 4,
50
+ "nbformat_minor": 0
51
+ }
preprocessor.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+
3
+ import numpy as np
4
+ import PIL.Image
5
+ import torch
6
+ import torchvision
7
+ from controlnet_aux import (
8
+ CannyDetector,
9
+ ContentShuffleDetector,
10
+ HEDdetector,
11
+ LineartAnimeDetector,
12
+ LineartDetector,
13
+ MidasDetector,
14
+ MLSDdetector,
15
+ NormalBaeDetector,
16
+ OpenposeDetector,
17
+ PidiNetDetector,
18
+ )
19
+ from controlnet_aux.util import HWC3
20
+
21
+ from cv_utils import resize_image
22
+ from depth_estimator import DepthEstimator
23
+ from image_segmentor import ImageSegmentor
24
+
25
+ from kornia.core import Tensor
26
+ from kornia.filters import canny
27
+
28
+
29
+ class Canny:
30
+
31
+ def __call__(
32
+ self,
33
+ images: np.array,
34
+ low_threshold: float = 0.1,
35
+ high_threshold: float = 0.2,
36
+ kernel_size: tuple[int, int] | int = (5, 5),
37
+ sigma: tuple[float, float] | Tensor = (1, 1),
38
+ hysteresis: bool = True,
39
+ eps: float = 1e-6
40
+ ) -> torch.Tensor:
41
+
42
+ assert low_threshold is not None, "low_threshold must be provided"
43
+ assert high_threshold is not None, "high_threshold must be provided"
44
+
45
+ images = torch.from_numpy(images).permute(2, 0, 1).unsqueeze(0) / 255.0
46
+
47
+ images_tensor = canny(images, low_threshold, high_threshold, kernel_size, sigma, hysteresis, eps)[1]
48
+ images_tensor = (images_tensor[0][0].numpy() * 255).astype(np.uint8)
49
+ return images_tensor
50
+
51
+
52
+ class Preprocessor:
53
+ MODEL_ID = "lllyasviel/Annotators"
54
+
55
+ def __init__(self):
56
+ self.model = None
57
+ self.name = ""
58
+
59
+ def load(self, name: str) -> None:
60
+ if name == self.name:
61
+ return
62
+ if name == "HED":
63
+ self.model = HEDdetector.from_pretrained(self.MODEL_ID)
64
+ elif name == "Midas":
65
+ self.model = MidasDetector.from_pretrained(self.MODEL_ID)
66
+ elif name == "MLSD":
67
+ self.model = MLSDdetector.from_pretrained(self.MODEL_ID)
68
+ elif name == "Openpose":
69
+ self.model = OpenposeDetector.from_pretrained(self.MODEL_ID)
70
+ elif name == "PidiNet":
71
+ self.model = PidiNetDetector.from_pretrained(self.MODEL_ID)
72
+ elif name == "NormalBae":
73
+ self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID)
74
+ elif name == "Lineart":
75
+ self.model = LineartDetector.from_pretrained(self.MODEL_ID)
76
+ elif name == "LineartAnime":
77
+ self.model = LineartAnimeDetector.from_pretrained(self.MODEL_ID)
78
+ elif name == "Canny":
79
+ self.model = Canny()
80
+ elif name == "ContentShuffle":
81
+ self.model = ContentShuffleDetector()
82
+ elif name == "DPT":
83
+ self.model = DepthEstimator()
84
+ elif name == "UPerNet":
85
+ self.model = ImageSegmentor()
86
+ else:
87
+ raise ValueError
88
+ torch.cuda.empty_cache()
89
+ gc.collect()
90
+ self.name = name
91
+
92
+ def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image:
93
+ if self.name == "Canny":
94
+ if "detect_resolution" in kwargs:
95
+ detect_resolution = kwargs.pop("detect_resolution")
96
+ image = np.array(image)
97
+ image = HWC3(image)
98
+ image = resize_image(image, resolution=detect_resolution)
99
+ image = self.model(image, **kwargs)
100
+ return PIL.Image.fromarray(image).convert('RGB')
101
+ elif self.name == "Midas":
102
+ detect_resolution = kwargs.pop("detect_resolution", 512)
103
+ image_resolution = kwargs.pop("image_resolution", 512)
104
+ image = np.array(image)
105
+ image = HWC3(image)
106
+ image = resize_image(image, resolution=detect_resolution)
107
+ image = self.model(image, **kwargs)
108
+ image = HWC3(image)
109
+ image = resize_image(image, resolution=image_resolution)
110
+ return PIL.Image.fromarray(image)
111
+ else:
112
+ return self.model(image, **kwargs)
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ controlnet-aux
2
+ torch==2.0.1
3
+ torchvision==0.15.2
4
+ diffusers
5
+ transformers
6
+ safetensors
7
+ accelerate
8
+ kornia
9
+ huggingface_hub
10
+ gradio==4.0.0
11
+ mediapipe
12
+ spaces
settings.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import numpy as np
4
+
5
+ DEFAULT_MODEL_ID = os.getenv("DEFAULT_MODEL_ID", "runwayml/stable-diffusion-v1-5")
6
+
7
+ MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "4"))
8
+ DEFAULT_NUM_IMAGES = min(MAX_NUM_IMAGES, int(os.getenv("DEFAULT_NUM_IMAGES", "2")))
9
+ MAX_IMAGE_RESOLUTION = int(os.getenv("MAX_IMAGE_RESOLUTION", "768"))
10
+ DEFAULT_IMAGE_RESOLUTION = min(MAX_IMAGE_RESOLUTION, int(os.getenv("DEFAULT_IMAGE_RESOLUTION", "512")))
11
+
12
+ ALLOW_CHANGING_BASE_MODEL = os.getenv("SPACE_ID") != "hysts/ControlNet-v1-1"
13
+ SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1"
14
+
15
+ MAX_SEED = np.iinfo(np.int32).max
style.css ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ h1 {
2
+ text-align: center;
3
+ }
4
+
5
+ #duplicate-button {
6
+ margin: auto;
7
+ color: #fff;
8
+ background: #1565c0;
9
+ border-radius: 100vh;
10
+ }
utils.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ from settings import MAX_SEED
4
+
5
+
6
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
7
+ if randomize_seed:
8
+ seed = random.randint(0, MAX_SEED)
9
+ return seed