Spaces:
Configuration error
Configuration error
import os | |
from controlnet_aux import OpenposeDetector | |
import torch | |
from diffusers import UniPCMultistepScheduler, AutoencoderKL, ControlNetModel | |
from diffusers.pipelines import StableDiffusionControlNetPipeline | |
import gradio as gr | |
import argparse | |
import cv2 | |
from pipelines.OmsDiffusionControlNetPipeline import OmsDiffusionControlNetPipeline | |
parser = argparse.ArgumentParser(description='oms diffusion') | |
parser.add_argument('--model_path', type=str, required=True) | |
parser.add_argument('--pipe_path', type=str, default="SG161222/Realistic_Vision_V4.0_noVAE") | |
parser.add_argument('--enable_cloth_guidance', action="store_true") | |
parser.add_argument('--faceid_version', type=str, default="FaceIDPlus", choices=['FaceID', 'FaceIDPlus', 'FaceIDPlusV2']) | |
args = parser.parse_args() | |
device = "cuda" | |
openpose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet").to(device) | |
control_net_openpose = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(dtype=torch.float16) | |
if args.enable_cloth_guidance: | |
pipe = OmsDiffusionControlNetPipeline.from_pretrained(args.pipe_path, vae=vae, controlnet=control_net_openpose, torch_dtype=torch.float16) | |
else: | |
pipe = StableDiffusionControlNetPipeline.from_pretrained(args.pipe_path, vae=vae, controlnet=control_net_openpose, torch_dtype=torch.float16) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
if args.faceid_version == "FaceID": | |
ip_lora = "./checkpoints/ipadapter_faceid/ip-adapter-faceid_sd15_lora.safetensors" | |
ip_ckpt = "./checkpoints/ipadapter_faceid/ip-adapter-faceid_sd15.bin" | |
pipe.load_lora_weights(ip_lora) | |
pipe.fuse_lora() | |
from garment_adapter.garment_ipadapter_faceid import IPAdapterFaceID | |
ip_model = IPAdapterFaceID(pipe, args.model_path, ip_ckpt, device, args.enable_cloth_guidance) | |
else: | |
if args.faceid_version == "FaceIDPlus": | |
ip_ckpt = "./checkpoints/ipadapter_faceid/ip-adapter-faceid-plus_sd15.bin" | |
ip_lora = "./checkpoints/ipadapter_faceid/ip-adapter-faceid-plus_sd15_lora.safetensors" | |
v2 = False | |
else: | |
ip_ckpt = "./checkpoints/ipadapter_faceid/ip-adapter-faceid-plusv2_sd15.bin" | |
ip_lora = "./checkpoints/ipadapter_faceid/ip-adapter-faceid-plusv2_sd15_lora.safetensors" | |
v2 = True | |
pipe.load_lora_weights(ip_lora) | |
pipe.fuse_lora() | |
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
from garment_adapter.garment_ipadapter_faceid import IPAdapterFaceIDPlus as IPAdapterFaceID | |
ip_model = IPAdapterFaceID(pipe, args.model_path, image_encoder_path, ip_ckpt, device, args.enable_cloth_guidance) | |
def process(cloth_image, face_img, cloth_mask_image, prompt, a_prompt, n_prompt, num_samples, width, height, sample_steps, scale, cloth_guidance_scale, seed, pose_image): | |
if args.faceid_version == "FaceID": | |
result = ip_model.generate(cloth_image, face_img, cloth_mask_image, prompt, a_prompt, n_prompt, num_samples, seed, scale, cloth_guidance_scale, sample_steps, height, width, image=pose_image) | |
else: | |
result = ip_model.generate(cloth_image, face_img, cloth_mask_image, prompt, a_prompt, n_prompt, num_samples, seed, scale, cloth_guidance_scale, sample_steps, height, width, shortcut=v2, image=pose_image) | |
if result is None: | |
raise gr.Error("人脸检测异常,尝试其他肖像") | |
else: | |
images, cloth_mask_image = result | |
return images, cloth_mask_image | |
def get_pose(image): | |
openpose_image = openpose_model(image) | |
return openpose_image | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("##You can enlarge image resolution to get better face, but the cloth maybe lose control, we will release high-resolution checkpoint soon##") | |
with gr.Row(): | |
with gr.Column(): | |
face_img = gr.Image(label="face Image", type="pil") | |
cloth_image = gr.Image(label="cloth Image", type="pil") | |
cloth_mask_image = gr.Image(label="cloth mask Image, if not support, will be produced by inner segment algorithm", type="pil") | |
prompt = gr.Textbox(label="Prompt", value='a photography') | |
run_button = gr.Button(value="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
height = gr.Slider(label="Height", minimum=256, maximum=1024, value=768, step=64) | |
width = gr.Slider(label="Width", minimum=192, maximum=768, value=576, step=64) | |
sample_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10., value=3. if args.enable_cloth_guidance else 2.5, step=0.1) | |
cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=1, maximum=10., value=3., step=0.1, visible=args.enable_cloth_guidance) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1234) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, high quality') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='bare, monochrome, lowres, bad anatomy, worst quality, low quality') | |
with gr.Column(): | |
pose_image = gr.Image(label="pose Image", type="pil") | |
pose_button = gr.Button(value="get pose") | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery") | |
cloth_seg_image = gr.Image(label="cloth mask", type="pil", width=192, height=256) | |
ips = [cloth_image, face_img, cloth_mask_image, prompt, a_prompt, n_prompt, num_samples, width, height, sample_steps, guidance_scale, cloth_guidance_scale, seed, pose_image] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, cloth_seg_image]) | |
pose_button.click(fn=get_pose, inputs=pose_image, outputs=pose_image) | |
block.launch(server_name="0.0.0.0", server_port=7860) | |