Spaces:
Configuration error
Configuration error
File size: 6,133 Bytes
6a05036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import os
from controlnet_aux import OpenposeDetector
import torch
from diffusers import UniPCMultistepScheduler, AutoencoderKL, ControlNetModel
from diffusers.pipelines import StableDiffusionControlNetPipeline
import gradio as gr
import argparse
import cv2
from pipelines.OmsDiffusionControlNetPipeline import OmsDiffusionControlNetPipeline
parser = argparse.ArgumentParser(description='oms diffusion')
parser.add_argument('--model_path', type=str, required=True)
parser.add_argument('--pipe_path', type=str, default="SG161222/Realistic_Vision_V4.0_noVAE")
parser.add_argument('--enable_cloth_guidance', action="store_true")
parser.add_argument('--faceid_version', type=str, default="FaceIDPlus", choices=['FaceID', 'FaceIDPlus', 'FaceIDPlusV2'])
args = parser.parse_args()
device = "cuda"
openpose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet").to(device)
control_net_openpose = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(dtype=torch.float16)
if args.enable_cloth_guidance:
pipe = OmsDiffusionControlNetPipeline.from_pretrained(args.pipe_path, vae=vae, controlnet=control_net_openpose, torch_dtype=torch.float16)
else:
pipe = StableDiffusionControlNetPipeline.from_pretrained(args.pipe_path, vae=vae, controlnet=control_net_openpose, torch_dtype=torch.float16)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
if args.faceid_version == "FaceID":
ip_lora = "./checkpoints/ipadapter_faceid/ip-adapter-faceid_sd15_lora.safetensors"
ip_ckpt = "./checkpoints/ipadapter_faceid/ip-adapter-faceid_sd15.bin"
pipe.load_lora_weights(ip_lora)
pipe.fuse_lora()
from garment_adapter.garment_ipadapter_faceid import IPAdapterFaceID
ip_model = IPAdapterFaceID(pipe, args.model_path, ip_ckpt, device, args.enable_cloth_guidance)
else:
if args.faceid_version == "FaceIDPlus":
ip_ckpt = "./checkpoints/ipadapter_faceid/ip-adapter-faceid-plus_sd15.bin"
ip_lora = "./checkpoints/ipadapter_faceid/ip-adapter-faceid-plus_sd15_lora.safetensors"
v2 = False
else:
ip_ckpt = "./checkpoints/ipadapter_faceid/ip-adapter-faceid-plusv2_sd15.bin"
ip_lora = "./checkpoints/ipadapter_faceid/ip-adapter-faceid-plusv2_sd15_lora.safetensors"
v2 = True
pipe.load_lora_weights(ip_lora)
pipe.fuse_lora()
image_encoder_path = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
from garment_adapter.garment_ipadapter_faceid import IPAdapterFaceIDPlus as IPAdapterFaceID
ip_model = IPAdapterFaceID(pipe, args.model_path, image_encoder_path, ip_ckpt, device, args.enable_cloth_guidance)
def process(cloth_image, face_img, cloth_mask_image, prompt, a_prompt, n_prompt, num_samples, width, height, sample_steps, scale, cloth_guidance_scale, seed, pose_image):
if args.faceid_version == "FaceID":
result = ip_model.generate(cloth_image, face_img, cloth_mask_image, prompt, a_prompt, n_prompt, num_samples, seed, scale, cloth_guidance_scale, sample_steps, height, width, image=pose_image)
else:
result = ip_model.generate(cloth_image, face_img, cloth_mask_image, prompt, a_prompt, n_prompt, num_samples, seed, scale, cloth_guidance_scale, sample_steps, height, width, shortcut=v2, image=pose_image)
if result is None:
raise gr.Error("人脸检测异常,尝试其他肖像")
else:
images, cloth_mask_image = result
return images, cloth_mask_image
def get_pose(image):
openpose_image = openpose_model(image)
return openpose_image
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("##You can enlarge image resolution to get better face, but the cloth maybe lose control, we will release high-resolution checkpoint soon##")
with gr.Row():
with gr.Column():
face_img = gr.Image(label="face Image", type="pil")
cloth_image = gr.Image(label="cloth Image", type="pil")
cloth_mask_image = gr.Image(label="cloth mask Image, if not support, will be produced by inner segment algorithm", type="pil")
prompt = gr.Textbox(label="Prompt", value='a photography')
run_button = gr.Button(value="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
height = gr.Slider(label="Height", minimum=256, maximum=1024, value=768, step=64)
width = gr.Slider(label="Width", minimum=192, maximum=768, value=576, step=64)
sample_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10., value=3. if args.enable_cloth_guidance else 2.5, step=0.1)
cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=1, maximum=10., value=3., step=0.1, visible=args.enable_cloth_guidance)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1234)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, high quality')
n_prompt = gr.Textbox(label="Negative Prompt", value='bare, monochrome, lowres, bad anatomy, worst quality, low quality')
with gr.Column():
pose_image = gr.Image(label="pose Image", type="pil")
pose_button = gr.Button(value="get pose")
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery")
cloth_seg_image = gr.Image(label="cloth mask", type="pil", width=192, height=256)
ips = [cloth_image, face_img, cloth_mask_image, prompt, a_prompt, n_prompt, num_samples, width, height, sample_steps, guidance_scale, cloth_guidance_scale, seed, pose_image]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, cloth_seg_image])
pose_button.click(fn=get_pose, inputs=pose_image, outputs=pose_image)
block.launch(server_name="0.0.0.0", server_port=7860)
|