Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import argparse | |
import warnings | |
import pytorch_lightning as pl | |
from pytorch_lightning import Trainer, strategies | |
import pytorch_lightning.callbacks as plc | |
from pytorch_lightning.loggers import CSVLogger | |
from pytorch_lightning.callbacks import TQDMProgressBar | |
from data_provider.pretrain_dm import PretrainDM | |
from data_provider.tune_dm import * | |
from model.opt_flash_attention import replace_opt_attn_with_flash_attn | |
from model.blip2_model import Blip2Model | |
from model.dist_funs import MyDeepSpeedStrategy | |
from data_provider.reaction_action_dataset import ActionDataset | |
from data_provider.data_utils import json_read, json_write | |
from data_provider.data_utils import smiles2data, reformat_smiles | |
## for pyg bug | |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') | |
## for A5000 gpus | |
torch.set_float32_matmul_precision('medium') # can be medium (bfloat16), high (tensorfloat32), highest (float32) | |
class InferenceRunner: | |
def __init__(self, model, tokenizer, rxn_max_len, smi_max_len, | |
smiles_type='default', device='cuda', predict_rxn_condition=True, args=None): | |
self.model = model | |
self.rxn_max_len = rxn_max_len | |
self.smi_max_len = smi_max_len | |
self.tokenizer = tokenizer | |
self.collater = Collater([], []) | |
self.mol_ph = '<mol>' * args.num_query_token | |
self.mol_token_id = tokenizer.mol_token_id | |
self.is_gal = args.opt_model.find('galactica') >= 0 | |
self.collater = Collater([], []) | |
self.device = device | |
self.smiles_type = smiles_type | |
self.predict_rxn_condition = predict_rxn_condition | |
self.args = args | |
def make_prompt(self, param_dict, smi_max_len=128, predict_rxn_condition=False): | |
action_sequence = param_dict['actions'] | |
smiles_list = [] | |
prompt = '' | |
prompt += 'Reactants: ' | |
smiles_wrapper = lambda x: reformat_smiles(x, smiles_type=self.smiles_type)[:smi_max_len] | |
for smi in param_dict['REACTANT']: | |
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
smiles_list.append(smi) | |
prompt += 'Product: ' | |
for smi in param_dict['PRODUCT']: | |
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
smiles_list.append(smi) | |
if param_dict['CATALYST']: | |
prompt += 'Catalysts: ' | |
for smi in param_dict['CATALYST']: | |
if smi in param_dict["extracted_molecules"]: | |
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
else: | |
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
smiles_list.append(smi) | |
if param_dict['SOLVENT']: | |
prompt += 'Solvents: ' | |
for smi in param_dict['SOLVENT']: | |
if smi in param_dict["extracted_molecules"]: | |
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
else: | |
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] ' | |
smiles_list.append(smi) | |
if predict_rxn_condition: | |
for value, token in param_dict['extracted_duration'].items(): | |
action_sequence = action_sequence.replace(token, value) | |
for value, token in param_dict['extracted_temperature'].items(): | |
action_sequence = action_sequence.replace(token, value) | |
else: | |
prompt += 'Temperatures: ' | |
for value, token in param_dict['extracted_temperature'].items(): | |
prompt += f'{token}: {value} ' | |
prompt += 'Durations: ' | |
for value, token in param_dict['extracted_duration'].items(): | |
prompt += f'{token}: {value} ' | |
prompt += 'Action Squence: ' | |
return prompt, smiles_list, action_sequence | |
def get_action_elements(self, rxn_dict): | |
rxn_id = rxn_dict['index'] | |
input_text, smiles_list, output_text = self.make_prompt(rxn_dict, self.smi_max_len, self.predict_rxn_condition) | |
output_text = output_text.strip() + '\n' | |
graph_list = [] | |
for smiles in smiles_list: | |
graph_item = smiles2data(smiles) | |
graph_list.append(graph_item) | |
return rxn_id, graph_list, output_text, input_text | |
def predict(self, rxn_dict): | |
rxn_id, graphs, prompt_tokens, output_text, input_text = self.tokenize(rxn_dict) | |
result_dict = { | |
'raw': rxn_dict, | |
'index': rxn_id, | |
'input': input_text, | |
'target': output_text | |
} | |
samples = {'graphs': graphs, 'prompt_tokens': prompt_tokens} | |
with torch.no_grad(): | |
result_dict['prediction'] = self.model.blip2opt.generate( | |
samples, | |
do_sample=self.args.do_sample, | |
num_beams=self.args.num_beams, | |
max_length=self.args.max_inference_len, | |
min_length=self.args.min_inference_len, | |
num_captions=self.args.num_generate_captions, | |
use_graph=True | |
) | |
return result_dict | |
def tokenize(self, rxn_dict): | |
rxn_id, graph_list, output_text, input_text = self.get_action_elements(rxn_dict) | |
if graph_list: | |
graphs = self.collater(graph_list).to(self.device) | |
input_prompt = smiles_handler(input_text, self.mol_ph, self.is_gal)[0] | |
## deal with prompt | |
self.tokenizer.padding_side = 'left' | |
input_prompt_tokens = self.tokenizer(input_prompt, | |
truncation=True, | |
padding='max_length', | |
add_special_tokens=True, | |
max_length=self.rxn_max_len, | |
return_tensors='pt', | |
return_attention_mask=True).to(self.device) | |
is_mol_token = input_prompt_tokens.input_ids == self.mol_token_id | |
input_prompt_tokens['is_mol_token'] = is_mol_token | |
return rxn_id, graphs, input_prompt_tokens, output_text, input_text | |
def main(args): | |
device = torch.device('cuda') | |
data_list = json_read('demo.json') | |
pl.seed_everything(args.seed) | |
# model | |
if args.init_checkpoint: | |
model = Blip2Model(args).to(device) | |
ckpt = torch.load(args.init_checkpoint, map_location='cpu') | |
model.load_state_dict(ckpt['state_dict'], strict=False) | |
print(f"loaded model from {args.init_checkpoint}") | |
else: | |
model = Blip2Model(args).to(device) | |
model.eval() | |
print('total params:', sum(p.numel() for p in model.parameters())) | |
if args.opt_model.find('galactica') >= 0 or args.opt_model.find('t5') >= 0: | |
tokenizer = model.blip2opt.opt_tokenizer | |
elif args.opt_model.find('llama') >= 0 or args.opt_model.find('vicuna') >= 0: | |
tokenizer = model.blip2opt.llm_tokenizer | |
else: | |
raise NotImplementedError | |
infer_runner = InferenceRunner( | |
model=model, | |
tokenizer=tokenizer, | |
rxn_max_len=args.rxn_max_len, | |
smi_max_len=args.smi_max_len, | |
device=device, | |
predict_rxn_condition=args.predict_rxn_condition, | |
args=args | |
) | |
import time | |
for data_item in data_list: | |
t1 = time.time() | |
result = infer_runner.predict(data_item) | |
print(result) | |
print(f"Time: {time.time() - t1:.2f}s") | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--filename', type=str, default="main") | |
parser.add_argument('--seed', type=int, default=42, help='random seed') | |
# MM settings | |
parser.add_argument('--mode', type=str, default='pretrain', choices=['pretrain', 'ft', 'eval', 'pretrain_eval']) | |
parser.add_argument('--strategy_name', type=str, default='mydeepspeed') | |
parser.add_argument('--iupac_prediction', action='store_true', default=False) | |
parser.add_argument('--ckpt_path', type=str, default=None) | |
# parser = Trainer.add_argparse_args(parser) | |
parser = Blip2Model.add_model_specific_args(parser) # add model args | |
parser = PretrainDM.add_model_specific_args(parser) | |
parser.add_argument('--accelerator', type=str, default='gpu') | |
parser.add_argument('--devices', type=str, default='0,1,2,3') | |
parser.add_argument('--precision', type=str, default='bf16-mixed') | |
parser.add_argument('--downstream_task', type=str, default='action', choices=['action', 'synthesis', 'caption', 'chebi']) | |
parser.add_argument('--max_epochs', type=int, default=10) | |
parser.add_argument('--enable_flash', action='store_true', default=False) | |
parser.add_argument('--disable_graph_cache', action='store_true', default=False) | |
parser.add_argument('--predict_rxn_condition', action='store_true', default=False) | |
parser.add_argument('--generate_restrict_tokens', action='store_true', default=False) | |
parser.add_argument('--train_restrict_tokens', action='store_true', default=False) | |
parser.add_argument('--smiles_type', type=str, default='default', choices=['default', 'canonical', 'restricted', 'unrestricted', 'r_smiles']) | |
parser.add_argument('--accumulate_grad_batches', type=int, default=1) | |
parser.add_argument('--tqdm_interval', type=int, default=50) | |
parser.add_argument('--check_val_every_n_epoch', type=int, default=1) | |
args = parser.parse_args() | |
if args.enable_flash: | |
replace_opt_attn_with_flash_attn() | |
print("=========================================") | |
for k, v in sorted(vars(args).items()): | |
print(k, '=', v) | |
print("=========================================") | |
return args | |
if __name__ == '__main__': | |
main(get_args()) | |