ReactXT / demo.py
SyrWin
init
95f97c5
raw
history blame
10 kB
import os
import torch
import argparse
import warnings
import pytorch_lightning as pl
from pytorch_lightning import Trainer, strategies
import pytorch_lightning.callbacks as plc
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.callbacks import TQDMProgressBar
from data_provider.pretrain_dm import PretrainDM
from data_provider.tune_dm import *
from model.opt_flash_attention import replace_opt_attn_with_flash_attn
from model.blip2_model import Blip2Model
from model.dist_funs import MyDeepSpeedStrategy
from data_provider.reaction_action_dataset import ActionDataset
from data_provider.data_utils import json_read, json_write
from data_provider.data_utils import smiles2data, reformat_smiles
## for pyg bug
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
## for A5000 gpus
torch.set_float32_matmul_precision('medium') # can be medium (bfloat16), high (tensorfloat32), highest (float32)
class InferenceRunner:
def __init__(self, model, tokenizer, rxn_max_len, smi_max_len,
smiles_type='default', device='cuda', predict_rxn_condition=True, args=None):
self.model = model
self.rxn_max_len = rxn_max_len
self.smi_max_len = smi_max_len
self.tokenizer = tokenizer
self.collater = Collater([], [])
self.mol_ph = '<mol>' * args.num_query_token
self.mol_token_id = tokenizer.mol_token_id
self.is_gal = args.opt_model.find('galactica') >= 0
self.collater = Collater([], [])
self.device = device
self.smiles_type = smiles_type
self.predict_rxn_condition = predict_rxn_condition
self.args = args
def make_prompt(self, param_dict, smi_max_len=128, predict_rxn_condition=False):
action_sequence = param_dict['actions']
smiles_list = []
prompt = ''
prompt += 'Reactants: '
smiles_wrapper = lambda x: reformat_smiles(x, smiles_type=self.smiles_type)[:smi_max_len]
for smi in param_dict['REACTANT']:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
prompt += 'Product: '
for smi in param_dict['PRODUCT']:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
if param_dict['CATALYST']:
prompt += 'Catalysts: '
for smi in param_dict['CATALYST']:
if smi in param_dict["extracted_molecules"]:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
else:
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
if param_dict['SOLVENT']:
prompt += 'Solvents: '
for smi in param_dict['SOLVENT']:
if smi in param_dict["extracted_molecules"]:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
else:
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
if predict_rxn_condition:
for value, token in param_dict['extracted_duration'].items():
action_sequence = action_sequence.replace(token, value)
for value, token in param_dict['extracted_temperature'].items():
action_sequence = action_sequence.replace(token, value)
else:
prompt += 'Temperatures: '
for value, token in param_dict['extracted_temperature'].items():
prompt += f'{token}: {value} '
prompt += 'Durations: '
for value, token in param_dict['extracted_duration'].items():
prompt += f'{token}: {value} '
prompt += 'Action Squence: '
return prompt, smiles_list, action_sequence
def get_action_elements(self, rxn_dict):
rxn_id = rxn_dict['index']
input_text, smiles_list, output_text = self.make_prompt(rxn_dict, self.smi_max_len, self.predict_rxn_condition)
output_text = output_text.strip() + '\n'
graph_list = []
for smiles in smiles_list:
graph_item = smiles2data(smiles)
graph_list.append(graph_item)
return rxn_id, graph_list, output_text, input_text
@torch.no_grad()
def predict(self, rxn_dict):
rxn_id, graphs, prompt_tokens, output_text, input_text = self.tokenize(rxn_dict)
result_dict = {
'raw': rxn_dict,
'index': rxn_id,
'input': input_text,
'target': output_text
}
samples = {'graphs': graphs, 'prompt_tokens': prompt_tokens}
with torch.no_grad():
result_dict['prediction'] = self.model.blip2opt.generate(
samples,
do_sample=self.args.do_sample,
num_beams=self.args.num_beams,
max_length=self.args.max_inference_len,
min_length=self.args.min_inference_len,
num_captions=self.args.num_generate_captions,
use_graph=True
)
return result_dict
def tokenize(self, rxn_dict):
rxn_id, graph_list, output_text, input_text = self.get_action_elements(rxn_dict)
if graph_list:
graphs = self.collater(graph_list).to(self.device)
input_prompt = smiles_handler(input_text, self.mol_ph, self.is_gal)[0]
## deal with prompt
self.tokenizer.padding_side = 'left'
input_prompt_tokens = self.tokenizer(input_prompt,
truncation=True,
padding='max_length',
add_special_tokens=True,
max_length=self.rxn_max_len,
return_tensors='pt',
return_attention_mask=True).to(self.device)
is_mol_token = input_prompt_tokens.input_ids == self.mol_token_id
input_prompt_tokens['is_mol_token'] = is_mol_token
return rxn_id, graphs, input_prompt_tokens, output_text, input_text
def main(args):
device = torch.device('cuda')
data_list = json_read('demo.json')
pl.seed_everything(args.seed)
# model
if args.init_checkpoint:
model = Blip2Model(args).to(device)
ckpt = torch.load(args.init_checkpoint, map_location='cpu')
model.load_state_dict(ckpt['state_dict'], strict=False)
print(f"loaded model from {args.init_checkpoint}")
else:
model = Blip2Model(args).to(device)
model.eval()
print('total params:', sum(p.numel() for p in model.parameters()))
if args.opt_model.find('galactica') >= 0 or args.opt_model.find('t5') >= 0:
tokenizer = model.blip2opt.opt_tokenizer
elif args.opt_model.find('llama') >= 0 or args.opt_model.find('vicuna') >= 0:
tokenizer = model.blip2opt.llm_tokenizer
else:
raise NotImplementedError
infer_runner = InferenceRunner(
model=model,
tokenizer=tokenizer,
rxn_max_len=args.rxn_max_len,
smi_max_len=args.smi_max_len,
device=device,
predict_rxn_condition=args.predict_rxn_condition,
args=args
)
import time
for data_item in data_list:
t1 = time.time()
result = infer_runner.predict(data_item)
print(result)
print(f"Time: {time.time() - t1:.2f}s")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--filename', type=str, default="main")
parser.add_argument('--seed', type=int, default=42, help='random seed')
# MM settings
parser.add_argument('--mode', type=str, default='pretrain', choices=['pretrain', 'ft', 'eval', 'pretrain_eval'])
parser.add_argument('--strategy_name', type=str, default='mydeepspeed')
parser.add_argument('--iupac_prediction', action='store_true', default=False)
parser.add_argument('--ckpt_path', type=str, default=None)
# parser = Trainer.add_argparse_args(parser)
parser = Blip2Model.add_model_specific_args(parser) # add model args
parser = PretrainDM.add_model_specific_args(parser)
parser.add_argument('--accelerator', type=str, default='gpu')
parser.add_argument('--devices', type=str, default='0,1,2,3')
parser.add_argument('--precision', type=str, default='bf16-mixed')
parser.add_argument('--downstream_task', type=str, default='action', choices=['action', 'synthesis', 'caption', 'chebi'])
parser.add_argument('--max_epochs', type=int, default=10)
parser.add_argument('--enable_flash', action='store_true', default=False)
parser.add_argument('--disable_graph_cache', action='store_true', default=False)
parser.add_argument('--predict_rxn_condition', action='store_true', default=False)
parser.add_argument('--generate_restrict_tokens', action='store_true', default=False)
parser.add_argument('--train_restrict_tokens', action='store_true', default=False)
parser.add_argument('--smiles_type', type=str, default='default', choices=['default', 'canonical', 'restricted', 'unrestricted', 'r_smiles'])
parser.add_argument('--accumulate_grad_batches', type=int, default=1)
parser.add_argument('--tqdm_interval', type=int, default=50)
parser.add_argument('--check_val_every_n_epoch', type=int, default=1)
args = parser.parse_args()
if args.enable_flash:
replace_opt_attn_with_flash_attn()
print("=========================================")
for k, v in sorted(vars(args).items()):
print(k, '=', v)
print("=========================================")
return args
if __name__ == '__main__':
main(get_args())