Spaces:
Runtime error
Runtime error
File size: 10,007 Bytes
95f97c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import torch
import argparse
import warnings
import pytorch_lightning as pl
from pytorch_lightning import Trainer, strategies
import pytorch_lightning.callbacks as plc
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.callbacks import TQDMProgressBar
from data_provider.pretrain_dm import PretrainDM
from data_provider.tune_dm import *
from model.opt_flash_attention import replace_opt_attn_with_flash_attn
from model.blip2_model import Blip2Model
from model.dist_funs import MyDeepSpeedStrategy
from data_provider.reaction_action_dataset import ActionDataset
from data_provider.data_utils import json_read, json_write
from data_provider.data_utils import smiles2data, reformat_smiles
## for pyg bug
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
## for A5000 gpus
torch.set_float32_matmul_precision('medium') # can be medium (bfloat16), high (tensorfloat32), highest (float32)
class InferenceRunner:
def __init__(self, model, tokenizer, rxn_max_len, smi_max_len,
smiles_type='default', device='cuda', predict_rxn_condition=True, args=None):
self.model = model
self.rxn_max_len = rxn_max_len
self.smi_max_len = smi_max_len
self.tokenizer = tokenizer
self.collater = Collater([], [])
self.mol_ph = '<mol>' * args.num_query_token
self.mol_token_id = tokenizer.mol_token_id
self.is_gal = args.opt_model.find('galactica') >= 0
self.collater = Collater([], [])
self.device = device
self.smiles_type = smiles_type
self.predict_rxn_condition = predict_rxn_condition
self.args = args
def make_prompt(self, param_dict, smi_max_len=128, predict_rxn_condition=False):
action_sequence = param_dict['actions']
smiles_list = []
prompt = ''
prompt += 'Reactants: '
smiles_wrapper = lambda x: reformat_smiles(x, smiles_type=self.smiles_type)[:smi_max_len]
for smi in param_dict['REACTANT']:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
prompt += 'Product: '
for smi in param_dict['PRODUCT']:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
if param_dict['CATALYST']:
prompt += 'Catalysts: '
for smi in param_dict['CATALYST']:
if smi in param_dict["extracted_molecules"]:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
else:
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
if param_dict['SOLVENT']:
prompt += 'Solvents: '
for smi in param_dict['SOLVENT']:
if smi in param_dict["extracted_molecules"]:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
else:
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
if predict_rxn_condition:
for value, token in param_dict['extracted_duration'].items():
action_sequence = action_sequence.replace(token, value)
for value, token in param_dict['extracted_temperature'].items():
action_sequence = action_sequence.replace(token, value)
else:
prompt += 'Temperatures: '
for value, token in param_dict['extracted_temperature'].items():
prompt += f'{token}: {value} '
prompt += 'Durations: '
for value, token in param_dict['extracted_duration'].items():
prompt += f'{token}: {value} '
prompt += 'Action Squence: '
return prompt, smiles_list, action_sequence
def get_action_elements(self, rxn_dict):
rxn_id = rxn_dict['index']
input_text, smiles_list, output_text = self.make_prompt(rxn_dict, self.smi_max_len, self.predict_rxn_condition)
output_text = output_text.strip() + '\n'
graph_list = []
for smiles in smiles_list:
graph_item = smiles2data(smiles)
graph_list.append(graph_item)
return rxn_id, graph_list, output_text, input_text
@torch.no_grad()
def predict(self, rxn_dict):
rxn_id, graphs, prompt_tokens, output_text, input_text = self.tokenize(rxn_dict)
result_dict = {
'raw': rxn_dict,
'index': rxn_id,
'input': input_text,
'target': output_text
}
samples = {'graphs': graphs, 'prompt_tokens': prompt_tokens}
with torch.no_grad():
result_dict['prediction'] = self.model.blip2opt.generate(
samples,
do_sample=self.args.do_sample,
num_beams=self.args.num_beams,
max_length=self.args.max_inference_len,
min_length=self.args.min_inference_len,
num_captions=self.args.num_generate_captions,
use_graph=True
)
return result_dict
def tokenize(self, rxn_dict):
rxn_id, graph_list, output_text, input_text = self.get_action_elements(rxn_dict)
if graph_list:
graphs = self.collater(graph_list).to(self.device)
input_prompt = smiles_handler(input_text, self.mol_ph, self.is_gal)[0]
## deal with prompt
self.tokenizer.padding_side = 'left'
input_prompt_tokens = self.tokenizer(input_prompt,
truncation=True,
padding='max_length',
add_special_tokens=True,
max_length=self.rxn_max_len,
return_tensors='pt',
return_attention_mask=True).to(self.device)
is_mol_token = input_prompt_tokens.input_ids == self.mol_token_id
input_prompt_tokens['is_mol_token'] = is_mol_token
return rxn_id, graphs, input_prompt_tokens, output_text, input_text
def main(args):
device = torch.device('cuda')
data_list = json_read('demo.json')
pl.seed_everything(args.seed)
# model
if args.init_checkpoint:
model = Blip2Model(args).to(device)
ckpt = torch.load(args.init_checkpoint, map_location='cpu')
model.load_state_dict(ckpt['state_dict'], strict=False)
print(f"loaded model from {args.init_checkpoint}")
else:
model = Blip2Model(args).to(device)
model.eval()
print('total params:', sum(p.numel() for p in model.parameters()))
if args.opt_model.find('galactica') >= 0 or args.opt_model.find('t5') >= 0:
tokenizer = model.blip2opt.opt_tokenizer
elif args.opt_model.find('llama') >= 0 or args.opt_model.find('vicuna') >= 0:
tokenizer = model.blip2opt.llm_tokenizer
else:
raise NotImplementedError
infer_runner = InferenceRunner(
model=model,
tokenizer=tokenizer,
rxn_max_len=args.rxn_max_len,
smi_max_len=args.smi_max_len,
device=device,
predict_rxn_condition=args.predict_rxn_condition,
args=args
)
import time
for data_item in data_list:
t1 = time.time()
result = infer_runner.predict(data_item)
print(result)
print(f"Time: {time.time() - t1:.2f}s")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--filename', type=str, default="main")
parser.add_argument('--seed', type=int, default=42, help='random seed')
# MM settings
parser.add_argument('--mode', type=str, default='pretrain', choices=['pretrain', 'ft', 'eval', 'pretrain_eval'])
parser.add_argument('--strategy_name', type=str, default='mydeepspeed')
parser.add_argument('--iupac_prediction', action='store_true', default=False)
parser.add_argument('--ckpt_path', type=str, default=None)
# parser = Trainer.add_argparse_args(parser)
parser = Blip2Model.add_model_specific_args(parser) # add model args
parser = PretrainDM.add_model_specific_args(parser)
parser.add_argument('--accelerator', type=str, default='gpu')
parser.add_argument('--devices', type=str, default='0,1,2,3')
parser.add_argument('--precision', type=str, default='bf16-mixed')
parser.add_argument('--downstream_task', type=str, default='action', choices=['action', 'synthesis', 'caption', 'chebi'])
parser.add_argument('--max_epochs', type=int, default=10)
parser.add_argument('--enable_flash', action='store_true', default=False)
parser.add_argument('--disable_graph_cache', action='store_true', default=False)
parser.add_argument('--predict_rxn_condition', action='store_true', default=False)
parser.add_argument('--generate_restrict_tokens', action='store_true', default=False)
parser.add_argument('--train_restrict_tokens', action='store_true', default=False)
parser.add_argument('--smiles_type', type=str, default='default', choices=['default', 'canonical', 'restricted', 'unrestricted', 'r_smiles'])
parser.add_argument('--accumulate_grad_batches', type=int, default=1)
parser.add_argument('--tqdm_interval', type=int, default=50)
parser.add_argument('--check_val_every_n_epoch', type=int, default=1)
args = parser.parse_args()
if args.enable_flash:
replace_opt_attn_with_flash_attn()
print("=========================================")
for k, v in sorted(vars(args).items()):
print(k, '=', v)
print("=========================================")
return args
if __name__ == '__main__':
main(get_args())
|