File size: 10,007 Bytes
95f97c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import torch
import argparse
import warnings
import pytorch_lightning as pl
from pytorch_lightning import Trainer, strategies
import pytorch_lightning.callbacks as plc
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.callbacks import TQDMProgressBar
from data_provider.pretrain_dm import PretrainDM
from data_provider.tune_dm import *
from model.opt_flash_attention import replace_opt_attn_with_flash_attn
from model.blip2_model import Blip2Model
from model.dist_funs import MyDeepSpeedStrategy
from data_provider.reaction_action_dataset import ActionDataset
from data_provider.data_utils import json_read, json_write
from data_provider.data_utils import smiles2data, reformat_smiles

## for pyg bug
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
## for A5000 gpus
torch.set_float32_matmul_precision('medium') # can be medium (bfloat16), high (tensorfloat32), highest (float32)


class InferenceRunner:
    def __init__(self, model, tokenizer, rxn_max_len, smi_max_len,
                 smiles_type='default', device='cuda', predict_rxn_condition=True, args=None):
        self.model = model
        self.rxn_max_len = rxn_max_len
        self.smi_max_len = smi_max_len
        self.tokenizer = tokenizer
        self.collater = Collater([], [])
        self.mol_ph = '<mol>' * args.num_query_token
        self.mol_token_id = tokenizer.mol_token_id
        self.is_gal = args.opt_model.find('galactica') >= 0
        self.collater = Collater([], [])
        self.device = device
        self.smiles_type = smiles_type
        self.predict_rxn_condition = predict_rxn_condition
        self.args = args

    def make_prompt(self, param_dict, smi_max_len=128, predict_rxn_condition=False):
        action_sequence = param_dict['actions']
        smiles_list = []
        prompt = ''
        prompt += 'Reactants: '
        smiles_wrapper = lambda x: reformat_smiles(x, smiles_type=self.smiles_type)[:smi_max_len]
        for smi in param_dict['REACTANT']:
            prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
            smiles_list.append(smi)
            
        prompt += 'Product: '
        for smi in param_dict['PRODUCT']:
            prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
            smiles_list.append(smi)

        if param_dict['CATALYST']:
            prompt += 'Catalysts: '
            for smi in param_dict['CATALYST']:
                if smi in param_dict["extracted_molecules"]:
                    prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
                else:
                    prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
                smiles_list.append(smi)

        if param_dict['SOLVENT']:
            prompt += 'Solvents: '
            for smi in param_dict['SOLVENT']:
                if smi in param_dict["extracted_molecules"]:
                    prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
                else:
                    prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
                smiles_list.append(smi)

        if predict_rxn_condition:
            for value, token in param_dict['extracted_duration'].items():
                action_sequence = action_sequence.replace(token, value)
            for value, token in param_dict['extracted_temperature'].items():
                action_sequence = action_sequence.replace(token, value)
        else:
            prompt += 'Temperatures: '
            for value, token in param_dict['extracted_temperature'].items():
                prompt += f'{token}: {value} '

            prompt += 'Durations: '
            for value, token in param_dict['extracted_duration'].items():
                prompt += f'{token}: {value} '

        prompt += 'Action Squence: '
        return prompt, smiles_list, action_sequence

    def get_action_elements(self, rxn_dict):
        rxn_id = rxn_dict['index']
        input_text, smiles_list, output_text = self.make_prompt(rxn_dict, self.smi_max_len, self.predict_rxn_condition)
        output_text = output_text.strip() + '\n'

        graph_list = []
        for smiles in smiles_list:
            graph_item = smiles2data(smiles)
            graph_list.append(graph_item)
        return rxn_id, graph_list, output_text, input_text
    
    @torch.no_grad()
    def predict(self, rxn_dict):
        rxn_id, graphs, prompt_tokens, output_text, input_text = self.tokenize(rxn_dict)
        result_dict = {
            'raw': rxn_dict,
            'index': rxn_id,
            'input': input_text,
            'target': output_text
        }
        samples = {'graphs': graphs, 'prompt_tokens': prompt_tokens}
        with torch.no_grad():
            result_dict['prediction'] = self.model.blip2opt.generate(
                samples,
                do_sample=self.args.do_sample,
                num_beams=self.args.num_beams,
                max_length=self.args.max_inference_len,
                min_length=self.args.min_inference_len,
                num_captions=self.args.num_generate_captions,
                use_graph=True
            )
        return result_dict
    
    def tokenize(self, rxn_dict):
        rxn_id, graph_list, output_text, input_text = self.get_action_elements(rxn_dict)
        if graph_list:
            graphs = self.collater(graph_list).to(self.device)
        input_prompt = smiles_handler(input_text, self.mol_ph, self.is_gal)[0]

        ## deal with prompt
        self.tokenizer.padding_side = 'left'
        input_prompt_tokens = self.tokenizer(input_prompt, 
                                              truncation=True, 
                                              padding='max_length', 
                                              add_special_tokens=True,
                                              max_length=self.rxn_max_len, 
                                              return_tensors='pt', 
                                              return_attention_mask=True).to(self.device)
        is_mol_token = input_prompt_tokens.input_ids == self.mol_token_id
        input_prompt_tokens['is_mol_token'] = is_mol_token
        return rxn_id, graphs, input_prompt_tokens, output_text, input_text


def main(args):
    device = torch.device('cuda')
    data_list = json_read('demo.json')
    pl.seed_everything(args.seed)
    # model
    if args.init_checkpoint:
        model = Blip2Model(args).to(device)
        ckpt = torch.load(args.init_checkpoint, map_location='cpu')
        model.load_state_dict(ckpt['state_dict'], strict=False)
        print(f"loaded model from {args.init_checkpoint}")
    else:
        model = Blip2Model(args).to(device)
    model.eval()

    print('total params:', sum(p.numel() for p in model.parameters()))

    if args.opt_model.find('galactica') >= 0 or args.opt_model.find('t5') >= 0:
        tokenizer = model.blip2opt.opt_tokenizer
    elif args.opt_model.find('llama') >= 0 or args.opt_model.find('vicuna') >= 0:
        tokenizer = model.blip2opt.llm_tokenizer
    else:
        raise NotImplementedError

    infer_runner = InferenceRunner(
        model=model,
        tokenizer=tokenizer,
        rxn_max_len=args.rxn_max_len,
        smi_max_len=args.smi_max_len,
        device=device,
        predict_rxn_condition=args.predict_rxn_condition,
        args=args
    )

    import time
    for data_item in data_list:
        t1 = time.time()
        result = infer_runner.predict(data_item)
        print(result)
        print(f"Time: {time.time() - t1:.2f}s")


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--filename', type=str, default="main")
    parser.add_argument('--seed', type=int, default=42, help='random seed')
    # MM settings
    parser.add_argument('--mode', type=str, default='pretrain', choices=['pretrain', 'ft', 'eval', 'pretrain_eval'])
    parser.add_argument('--strategy_name', type=str, default='mydeepspeed')
    parser.add_argument('--iupac_prediction', action='store_true', default=False)
    parser.add_argument('--ckpt_path', type=str, default=None)
    # parser = Trainer.add_argparse_args(parser)
    parser = Blip2Model.add_model_specific_args(parser)  # add model args
    parser = PretrainDM.add_model_specific_args(parser)
    parser.add_argument('--accelerator', type=str, default='gpu')
    parser.add_argument('--devices', type=str, default='0,1,2,3')
    parser.add_argument('--precision', type=str, default='bf16-mixed')
    parser.add_argument('--downstream_task', type=str, default='action', choices=['action', 'synthesis', 'caption', 'chebi'])
    parser.add_argument('--max_epochs', type=int, default=10)
    parser.add_argument('--enable_flash', action='store_true', default=False)
    parser.add_argument('--disable_graph_cache', action='store_true', default=False)
    parser.add_argument('--predict_rxn_condition', action='store_true', default=False)
    parser.add_argument('--generate_restrict_tokens', action='store_true', default=False)
    parser.add_argument('--train_restrict_tokens', action='store_true', default=False)
    parser.add_argument('--smiles_type', type=str, default='default', choices=['default', 'canonical', 'restricted', 'unrestricted', 'r_smiles'])
    parser.add_argument('--accumulate_grad_batches', type=int, default=1)
    parser.add_argument('--tqdm_interval', type=int, default=50)
    parser.add_argument('--check_val_every_n_epoch', type=int, default=1)
    args = parser.parse_args()

    if args.enable_flash:
        replace_opt_attn_with_flash_attn()
    print("=========================================")
    for k, v in sorted(vars(args).items()):
        print(k, '=', v)
    print("=========================================")
    return args

if __name__ == '__main__':
    main(get_args())