ReactXT / app.py
SyrWin
updated @spaces.GPU
3468330
raw
history blame
13.2 kB
import os
import torch
import argparse
import warnings
from rdkit import Chem
from rdkit.Chem import CanonSmiles
from rdkit.Chem import MolFromSmiles, MolToSmiles
from data_provider.pretrain_dm import PretrainDM
from data_provider.tune_dm import *
from model.opt_flash_attention import replace_opt_attn_with_flash_attn
from model.blip2_model import Blip2Model
from data_provider.data_utils import json_read, json_write
from data_provider.data_utils import smiles2data, reformat_smiles
import gradio as gr
import space
from datetime import datetime
## for pyg bug
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
## for A5000 gpus
torch.set_float32_matmul_precision('medium') # can be medium (bfloat16), high (tensorfloat32), highest (float32)
def smiles_split(string, separator='.'):
string = str(string)
mols = []
for smi in string.split(separator):
mol = MolFromSmiles(smi)
if mol is None:
continue # Skip invalid SMILES strings
mols.append(mol)
parts = []
current_part = []
charge_count = 0
for mol in mols:
charge = Chem.GetFormalCharge(mol)
if charge==0:
if current_part:
smiles = '.'.join([MolToSmiles(m) for m in current_part])
smiles = CanonSmiles(smiles)
parts.append(smiles)
current_part = []
charge_count = 0
parts.append(MolToSmiles(mol))
else:
charge_count += charge
current_part.append(mol)
if charge_count == 0:
smiles = '.'.join([MolToSmiles(m) for m in current_part])
smiles = CanonSmiles(smiles)
parts.append(smiles)
current_part = []
charge_count = 0
if current_part:
smiles = '.'.join([MolToSmiles(m) for m in current_part])
smiles = CanonSmiles(smiles)
parts.append(smiles)
return parts
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--filename', type=str, default="main")
parser.add_argument('--seed', type=int, default=42, help='random seed')
# MM settings
parser.add_argument('--mode', type=str, default='pretrain', choices=['pretrain', 'ft', 'eval', 'pretrain_eval'])
parser.add_argument('--strategy_name', type=str, default='mydeepspeed')
parser.add_argument('--iupac_prediction', action='store_true', default=False)
parser.add_argument('--ckpt_path', type=str, default=None)
# parser = Trainer.add_argparse_args(parser)
parser = Blip2Model.add_model_specific_args(parser) # add model args
parser = PretrainDM.add_model_specific_args(parser)
parser.add_argument('--accelerator', type=str, default='gpu')
parser.add_argument('--devices', type=str, default='0,1,2,3')
parser.add_argument('--precision', type=str, default='bf16-mixed')
parser.add_argument('--downstream_task', type=str, default='action', choices=['action', 'synthesis', 'caption', 'chebi'])
parser.add_argument('--max_epochs', type=int, default=10)
parser.add_argument('--enable_flash', action='store_true', default=False)
parser.add_argument('--disable_graph_cache', action='store_true', default=False)
parser.add_argument('--generate_restrict_tokens', action='store_true', default=False)
parser.add_argument('--train_restrict_tokens', action='store_true', default=False)
parser.add_argument('--smiles_type', type=str, default='default', choices=['default', 'canonical', 'restricted', 'unrestricted', 'r_smiles'])
parser.add_argument('--accumulate_grad_batches', type=int, default=1)
parser.add_argument('--tqdm_interval', type=int, default=50)
parser.add_argument('--check_val_every_n_epoch', type=int, default=1)
args = parser.parse_args()
if args.enable_flash:
replace_opt_attn_with_flash_attn()
return args
app_config = {
"init_checkpoint": "all_checkpoints/ckpt_tune_hybridFeb11_May31/last_converted.ckpt",
"filename": "app",
"opt_model": "facebook/galactica-1.3b",
"num_workers": 4,
"rxn_max_len": 512,
"text_max_len": 512,
"precision": "bf16-mixed",
"max_inference_len": 512,
}
class InferenceRunner:
def __init__(self, model, tokenizer, rxn_max_len, smi_max_len,
smiles_type='default', device='cuda', args=None):
self.model = model
self.rxn_max_len = rxn_max_len
self.smi_max_len = smi_max_len
self.tokenizer = tokenizer
self.collater = Collater([], [])
self.mol_ph = '<mol>' * args.num_query_token
self.mol_token_id = tokenizer.mol_token_id
self.is_gal = args.opt_model.find('galactica') >= 0
self.collater = Collater([], [])
self.device = device
self.smiles_type = smiles_type
self.args = args
time_stamp = datetime.now().strftime("%Y.%m.%d-%H:%M")
self.cache_dir = f'results/{self.args.filename}/{time_stamp}'
os.makedirs(self.cache_dir, exist_ok=True)
def make_query_dict(self, rxn_string):
try:
reactant, solvent, product = rxn_string.split('>')
reactant = smiles_split(reactant)
product = smiles_split(product)
solvent = smiles_split(solvent) if solvent else []
assert reactant and product
except:
raise KeyError('Please input a valid reaction string')
extracted_molecules = {product[0]: "$-1$"}
for mol in reactant+solvent:
extracted_molecules[mol] = f"${len(extracted_molecules)}$"
result_dict = {}
result_dict['time_stamp'] = datetime.now().strftime("%Y.%m.%d %H:%M:%S.%f")[:-3]
result_dict['reaction_string'] = rxn_string
result_dict['REACTANT'] = reactant
result_dict['SOLVENT'] = solvent
result_dict['CATALYST'] = []
result_dict['PRODUCT'] = product
result_dict['extracted_molecules'] = extracted_molecules
return result_dict
def save_prediction(self, result_dict):
os.makedirs(self.cache_dir, exist_ok=True)
result_id = result_dict['time_stamp']
result_path = os.path.join(self.cache_dir, f'{result_id}.json')
json_write(result_path, result_dict)
def make_prompt(self, param_dict, smi_max_len=128):
smiles_list = []
prompt = ''
prompt += 'Reactants: '
smiles_wrapper = lambda x: reformat_smiles(x, smiles_type=self.smiles_type)[:smi_max_len]
for smi in param_dict['REACTANT']:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
prompt += 'Product: '
for smi in param_dict['PRODUCT']:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
if param_dict['CATALYST']:
prompt += 'Catalysts: '
for smi in param_dict['CATALYST']:
if smi in param_dict["extracted_molecules"]:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
else:
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
if param_dict['SOLVENT']:
prompt += 'Solvents: '
for smi in param_dict['SOLVENT']:
if smi in param_dict["extracted_molecules"]:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
else:
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
prompt += 'Action Squence: '
return prompt, smiles_list
def get_action_elements(self, rxn_dict):
input_text, smiles_list = self.make_prompt(rxn_dict, self.smi_max_len)
graph_list = []
for smiles in smiles_list:
graph_item = smiles2data(smiles)
graph_list.append(graph_item)
return graph_list, input_text
@torch.no_grad()
@spaces.GPU
def predict(self, rxn_dict, temperature=1):
graphs, prompt_tokens = self.tokenize(rxn_dict)
result_dict = rxn_dict
samples = {'graphs': graphs, 'prompt_tokens': prompt_tokens}
prediction = self.model.blip2opt.generate(
samples,
do_sample=self.args.do_sample,
num_beams=self.args.num_beams,
max_length=self.args.max_inference_len,
min_length=self.args.min_inference_len,
num_captions=self.args.num_generate_captions,
temperature=temperature,
use_graph=True
)[0]
for k, v in result_dict['extracted_molecules'].items():
prediction = prediction.replace(v, k)
result_dict['prediction'] = prediction
return result_dict
def tokenize(self, rxn_dict):
graph_list, input_text = self.get_action_elements(rxn_dict)
if graph_list:
graphs = self.collater(graph_list).to(self.device)
input_prompt = smiles_handler(input_text, self.mol_ph, self.is_gal)[0]
## deal with prompt
self.tokenizer.padding_side = 'left'
input_prompt_tokens = self.tokenizer(input_prompt,
truncation=True,
padding='max_length',
add_special_tokens=True,
max_length=self.rxn_max_len,
return_tensors='pt',
return_attention_mask=True).to(self.device)
is_mol_token = input_prompt_tokens.input_ids == self.mol_token_id
input_prompt_tokens['is_mol_token'] = is_mol_token
return graphs, input_prompt_tokens
def main(args):
device = torch.device('cuda')
# model
if args.init_checkpoint:
model = Blip2Model(args).to(device)
ckpt = torch.load(args.init_checkpoint, map_location='cpu')
model.load_state_dict(ckpt['state_dict'], strict=False)
print(f"loaded model from {args.init_checkpoint}")
else:
model = Blip2Model(args).to(device)
model.eval()
print('total params:', sum(p.numel() for p in model.parameters()))
if args.opt_model.find('galactica') >= 0 or args.opt_model.find('t5') >= 0:
tokenizer = model.blip2opt.opt_tokenizer
elif args.opt_model.find('llama') >= 0 or args.opt_model.find('vicuna') >= 0:
tokenizer = model.blip2opt.llm_tokenizer
else:
raise NotImplementedError
infer_runner = InferenceRunner(
model=model,
tokenizer=tokenizer,
rxn_max_len=args.rxn_max_len,
smi_max_len=args.smi_max_len,
device=device,
args=args
)
example_inputs = json_read('demo.json')
example_inputs = [[e] for e in example_inputs]
def online_chat(reaction_string, temperature=1):
data_item = infer_runner.make_query_dict(reaction_string)
result = infer_runner.predict(data_item, temperature=temperature)
infer_runner.save_prediction(result)
prediction = result['prediction'].replace(' ; ', ' ;\n')
return prediction
with gr.Blocks(css="""
.center { display: flex; justify-content: center; }
""") as demo:
gr.HTML(
"""
<center><h1><b>ReactXT</b></h1></center>
<p style="font-size:20px; font-weight:bold;">This is the demo page of our ACL 2024 paper
<i>ReactXT: Understanding Molecular “Reaction-ship” via Reaction-Contextualized Molecule-Text Pretraining.</i></p>
""")
with gr.Row(elem_classes="center"):
gr.Image(value="./figures/frameworks.jpg", elem_classes="center", width=800, label="Framework of ReactXT")
gr.HTML(
"""
<p style="font-size:16px;"> Please input one chemical reaction below, and we will generate the predicted experimental procedure.</p>
<p style="font-size:16px;"> The reaction should be in form of <b>Reactants>Reagents>Product</b>.</p>
""")
reaction_string = gr.Textbox(placeholder="Input one reaction", label='Input Reaction')
gr.Examples(example_inputs, [reaction_string,], fn=online_chat, label='Example Reactions')
with gr.Row():
btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
temperature = gr.Slider(0.1, 1, value=1, label='Temperature')
with gr.Row():
out = gr.Textbox(label="ReactXT's Output", placeholder="Predicted experimental procedure")
btn.click(fn=online_chat, inputs=[reaction_string, temperature], outputs=[out])
clear_btn.click(fn=lambda:("", ""), inputs=[], outputs=[reaction_string, out])
demo.launch(share=True)
if __name__ == '__main__':
args = get_args()
vars(args).update(app_config)
main(args)