Spaces:
Runtime error
Runtime error
File size: 13,194 Bytes
95f97c5 3468330 95f97c5 3468330 95f97c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import os
import torch
import argparse
import warnings
from rdkit import Chem
from rdkit.Chem import CanonSmiles
from rdkit.Chem import MolFromSmiles, MolToSmiles
from data_provider.pretrain_dm import PretrainDM
from data_provider.tune_dm import *
from model.opt_flash_attention import replace_opt_attn_with_flash_attn
from model.blip2_model import Blip2Model
from data_provider.data_utils import json_read, json_write
from data_provider.data_utils import smiles2data, reformat_smiles
import gradio as gr
import space
from datetime import datetime
## for pyg bug
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
## for A5000 gpus
torch.set_float32_matmul_precision('medium') # can be medium (bfloat16), high (tensorfloat32), highest (float32)
def smiles_split(string, separator='.'):
string = str(string)
mols = []
for smi in string.split(separator):
mol = MolFromSmiles(smi)
if mol is None:
continue # Skip invalid SMILES strings
mols.append(mol)
parts = []
current_part = []
charge_count = 0
for mol in mols:
charge = Chem.GetFormalCharge(mol)
if charge==0:
if current_part:
smiles = '.'.join([MolToSmiles(m) for m in current_part])
smiles = CanonSmiles(smiles)
parts.append(smiles)
current_part = []
charge_count = 0
parts.append(MolToSmiles(mol))
else:
charge_count += charge
current_part.append(mol)
if charge_count == 0:
smiles = '.'.join([MolToSmiles(m) for m in current_part])
smiles = CanonSmiles(smiles)
parts.append(smiles)
current_part = []
charge_count = 0
if current_part:
smiles = '.'.join([MolToSmiles(m) for m in current_part])
smiles = CanonSmiles(smiles)
parts.append(smiles)
return parts
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--filename', type=str, default="main")
parser.add_argument('--seed', type=int, default=42, help='random seed')
# MM settings
parser.add_argument('--mode', type=str, default='pretrain', choices=['pretrain', 'ft', 'eval', 'pretrain_eval'])
parser.add_argument('--strategy_name', type=str, default='mydeepspeed')
parser.add_argument('--iupac_prediction', action='store_true', default=False)
parser.add_argument('--ckpt_path', type=str, default=None)
# parser = Trainer.add_argparse_args(parser)
parser = Blip2Model.add_model_specific_args(parser) # add model args
parser = PretrainDM.add_model_specific_args(parser)
parser.add_argument('--accelerator', type=str, default='gpu')
parser.add_argument('--devices', type=str, default='0,1,2,3')
parser.add_argument('--precision', type=str, default='bf16-mixed')
parser.add_argument('--downstream_task', type=str, default='action', choices=['action', 'synthesis', 'caption', 'chebi'])
parser.add_argument('--max_epochs', type=int, default=10)
parser.add_argument('--enable_flash', action='store_true', default=False)
parser.add_argument('--disable_graph_cache', action='store_true', default=False)
parser.add_argument('--generate_restrict_tokens', action='store_true', default=False)
parser.add_argument('--train_restrict_tokens', action='store_true', default=False)
parser.add_argument('--smiles_type', type=str, default='default', choices=['default', 'canonical', 'restricted', 'unrestricted', 'r_smiles'])
parser.add_argument('--accumulate_grad_batches', type=int, default=1)
parser.add_argument('--tqdm_interval', type=int, default=50)
parser.add_argument('--check_val_every_n_epoch', type=int, default=1)
args = parser.parse_args()
if args.enable_flash:
replace_opt_attn_with_flash_attn()
return args
app_config = {
"init_checkpoint": "all_checkpoints/ckpt_tune_hybridFeb11_May31/last_converted.ckpt",
"filename": "app",
"opt_model": "facebook/galactica-1.3b",
"num_workers": 4,
"rxn_max_len": 512,
"text_max_len": 512,
"precision": "bf16-mixed",
"max_inference_len": 512,
}
class InferenceRunner:
def __init__(self, model, tokenizer, rxn_max_len, smi_max_len,
smiles_type='default', device='cuda', args=None):
self.model = model
self.rxn_max_len = rxn_max_len
self.smi_max_len = smi_max_len
self.tokenizer = tokenizer
self.collater = Collater([], [])
self.mol_ph = '<mol>' * args.num_query_token
self.mol_token_id = tokenizer.mol_token_id
self.is_gal = args.opt_model.find('galactica') >= 0
self.collater = Collater([], [])
self.device = device
self.smiles_type = smiles_type
self.args = args
time_stamp = datetime.now().strftime("%Y.%m.%d-%H:%M")
self.cache_dir = f'results/{self.args.filename}/{time_stamp}'
os.makedirs(self.cache_dir, exist_ok=True)
def make_query_dict(self, rxn_string):
try:
reactant, solvent, product = rxn_string.split('>')
reactant = smiles_split(reactant)
product = smiles_split(product)
solvent = smiles_split(solvent) if solvent else []
assert reactant and product
except:
raise KeyError('Please input a valid reaction string')
extracted_molecules = {product[0]: "$-1$"}
for mol in reactant+solvent:
extracted_molecules[mol] = f"${len(extracted_molecules)}$"
result_dict = {}
result_dict['time_stamp'] = datetime.now().strftime("%Y.%m.%d %H:%M:%S.%f")[:-3]
result_dict['reaction_string'] = rxn_string
result_dict['REACTANT'] = reactant
result_dict['SOLVENT'] = solvent
result_dict['CATALYST'] = []
result_dict['PRODUCT'] = product
result_dict['extracted_molecules'] = extracted_molecules
return result_dict
def save_prediction(self, result_dict):
os.makedirs(self.cache_dir, exist_ok=True)
result_id = result_dict['time_stamp']
result_path = os.path.join(self.cache_dir, f'{result_id}.json')
json_write(result_path, result_dict)
def make_prompt(self, param_dict, smi_max_len=128):
smiles_list = []
prompt = ''
prompt += 'Reactants: '
smiles_wrapper = lambda x: reformat_smiles(x, smiles_type=self.smiles_type)[:smi_max_len]
for smi in param_dict['REACTANT']:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
prompt += 'Product: '
for smi in param_dict['PRODUCT']:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
if param_dict['CATALYST']:
prompt += 'Catalysts: '
for smi in param_dict['CATALYST']:
if smi in param_dict["extracted_molecules"]:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
else:
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
if param_dict['SOLVENT']:
prompt += 'Solvents: '
for smi in param_dict['SOLVENT']:
if smi in param_dict["extracted_molecules"]:
prompt += f'{param_dict["extracted_molecules"][smi]}: [START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
else:
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
smiles_list.append(smi)
prompt += 'Action Squence: '
return prompt, smiles_list
def get_action_elements(self, rxn_dict):
input_text, smiles_list = self.make_prompt(rxn_dict, self.smi_max_len)
graph_list = []
for smiles in smiles_list:
graph_item = smiles2data(smiles)
graph_list.append(graph_item)
return graph_list, input_text
@torch.no_grad()
@spaces.GPU
def predict(self, rxn_dict, temperature=1):
graphs, prompt_tokens = self.tokenize(rxn_dict)
result_dict = rxn_dict
samples = {'graphs': graphs, 'prompt_tokens': prompt_tokens}
prediction = self.model.blip2opt.generate(
samples,
do_sample=self.args.do_sample,
num_beams=self.args.num_beams,
max_length=self.args.max_inference_len,
min_length=self.args.min_inference_len,
num_captions=self.args.num_generate_captions,
temperature=temperature,
use_graph=True
)[0]
for k, v in result_dict['extracted_molecules'].items():
prediction = prediction.replace(v, k)
result_dict['prediction'] = prediction
return result_dict
def tokenize(self, rxn_dict):
graph_list, input_text = self.get_action_elements(rxn_dict)
if graph_list:
graphs = self.collater(graph_list).to(self.device)
input_prompt = smiles_handler(input_text, self.mol_ph, self.is_gal)[0]
## deal with prompt
self.tokenizer.padding_side = 'left'
input_prompt_tokens = self.tokenizer(input_prompt,
truncation=True,
padding='max_length',
add_special_tokens=True,
max_length=self.rxn_max_len,
return_tensors='pt',
return_attention_mask=True).to(self.device)
is_mol_token = input_prompt_tokens.input_ids == self.mol_token_id
input_prompt_tokens['is_mol_token'] = is_mol_token
return graphs, input_prompt_tokens
def main(args):
device = torch.device('cuda')
# model
if args.init_checkpoint:
model = Blip2Model(args).to(device)
ckpt = torch.load(args.init_checkpoint, map_location='cpu')
model.load_state_dict(ckpt['state_dict'], strict=False)
print(f"loaded model from {args.init_checkpoint}")
else:
model = Blip2Model(args).to(device)
model.eval()
print('total params:', sum(p.numel() for p in model.parameters()))
if args.opt_model.find('galactica') >= 0 or args.opt_model.find('t5') >= 0:
tokenizer = model.blip2opt.opt_tokenizer
elif args.opt_model.find('llama') >= 0 or args.opt_model.find('vicuna') >= 0:
tokenizer = model.blip2opt.llm_tokenizer
else:
raise NotImplementedError
infer_runner = InferenceRunner(
model=model,
tokenizer=tokenizer,
rxn_max_len=args.rxn_max_len,
smi_max_len=args.smi_max_len,
device=device,
args=args
)
example_inputs = json_read('demo.json')
example_inputs = [[e] for e in example_inputs]
def online_chat(reaction_string, temperature=1):
data_item = infer_runner.make_query_dict(reaction_string)
result = infer_runner.predict(data_item, temperature=temperature)
infer_runner.save_prediction(result)
prediction = result['prediction'].replace(' ; ', ' ;\n')
return prediction
with gr.Blocks(css="""
.center { display: flex; justify-content: center; }
""") as demo:
gr.HTML(
"""
<center><h1><b>ReactXT</b></h1></center>
<p style="font-size:20px; font-weight:bold;">This is the demo page of our ACL 2024 paper
<i>ReactXT: Understanding Molecular “Reaction-ship” via Reaction-Contextualized Molecule-Text Pretraining.</i></p>
""")
with gr.Row(elem_classes="center"):
gr.Image(value="./figures/frameworks.jpg", elem_classes="center", width=800, label="Framework of ReactXT")
gr.HTML(
"""
<p style="font-size:16px;"> Please input one chemical reaction below, and we will generate the predicted experimental procedure.</p>
<p style="font-size:16px;"> The reaction should be in form of <b>Reactants>Reagents>Product</b>.</p>
""")
reaction_string = gr.Textbox(placeholder="Input one reaction", label='Input Reaction')
gr.Examples(example_inputs, [reaction_string,], fn=online_chat, label='Example Reactions')
with gr.Row():
btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
temperature = gr.Slider(0.1, 1, value=1, label='Temperature')
with gr.Row():
out = gr.Textbox(label="ReactXT's Output", placeholder="Predicted experimental procedure")
btn.click(fn=online_chat, inputs=[reaction_string, temperature], outputs=[out])
clear_btn.click(fn=lambda:("", ""), inputs=[], outputs=[reaction_string, out])
demo.launch(share=True)
if __name__ == '__main__':
args = get_args()
vars(args).update(app_config)
main(args) |