Spaces:
Sleeping
Sleeping
import open3d_zerogpu_fix | |
import spaces | |
from diffusers import ControlNetModel | |
from diffusers import StableDiffusionXLControlNetPipeline | |
from diffusers import EulerAncestralDiscreteScheduler | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
import gradio as gr | |
from torchvision import transforms | |
from controlnet_aux import OpenposeDetector | |
import random | |
import open3d as o3d | |
from collections import Counter | |
import trimesh | |
ratios_map = { | |
0.5:{"width":704,"height":1408}, | |
0.57:{"width":768,"height":1344}, | |
0.68:{"width":832,"height":1216}, | |
0.72:{"width":832,"height":1152}, | |
0.78:{"width":896,"height":1152}, | |
0.82:{"width":896,"height":1088}, | |
0.88:{"width":960,"height":1088}, | |
0.94:{"width":960,"height":1024}, | |
1.00:{"width":1024,"height":1024}, | |
1.13:{"width":1088,"height":960}, | |
1.21:{"width":1088,"height":896}, | |
1.29:{"width":1152,"height":896}, | |
1.38:{"width":1152,"height":832}, | |
1.46:{"width":1216,"height":832}, | |
1.67:{"width":1280,"height":768}, | |
1.75:{"width":1344,"height":768}, | |
2.00:{"width":1408,"height":704} | |
} | |
ratios = np.array(list(ratios_map.keys())) | |
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') | |
controlnet = ControlNetModel.from_pretrained( | |
"yeq6x/Image2PositionColor_v3", | |
torch_dtype=torch.float16 | |
).to('cuda') | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"yeq6x/animagine_position_map", | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
offload_state_dict=True, | |
).to('cuda').to(torch.float16) | |
pipe.scheduler = EulerAncestralDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
steps_offset=1 | |
) | |
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7) | |
# pipe.enable_xformers_memory_efficient_attention() | |
pipe.force_zeros_for_empty_prompt = False | |
def get_size(init_image): | |
w,h=init_image.size | |
curr_ratio = w/h | |
ind = np.argmin(np.abs(curr_ratio-ratios)) | |
ratio = ratios[ind] | |
chosen_ratio = ratios_map[ratio] | |
w,h = chosen_ratio['width'], chosen_ratio['height'] | |
return w,h | |
def resize_image(image): | |
image = image.convert('RGB') | |
w,h = get_size(image) | |
resized_image = image.resize((w, h)) | |
return resized_image | |
def resize_image_old(image): | |
image = image.convert('RGB') | |
current_size = image.size | |
if current_size[0] > current_size[1]: | |
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1])) | |
else: | |
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0])) | |
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024)) | |
return resized_image | |
def generate_(prompt, negative_prompt, pose_image, input_image, controlnet_conditioning_scale): | |
generator = torch.Generator() | |
generator.manual_seed(random.randint(0, 2147483647)) | |
images = pipe( | |
prompt, negative_prompt=negative_prompt, image=pose_image, num_inference_steps=20, controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
generator=generator, height=input_image.size[1], width=input_image.size[0], | |
).images | |
return images | |
def process(input_image, prompt, negative_prompt, controlnet_conditioning_scale): | |
# resize input_image to 1024x1024 | |
input_image = resize_image(input_image) | |
pose_image = openpose(input_image, include_body=True, include_hand=True, include_face=True) | |
images = generate_(prompt, negative_prompt, pose_image, input_image, controlnet_conditioning_scale) | |
return [pose_image,images[0]] | |
def predict_image(cond_image, prompt, negative_prompt, controlnet_conditioning_scale): | |
print("predict position map") | |
global pipe | |
generator = torch.Generator() | |
generator.manual_seed(random.randint(0, 2147483647)) | |
image = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image = cond_image, | |
width=1024, | |
height=1024, | |
guidance_scale=8, | |
num_inference_steps=20, | |
generator=generator, | |
guess_mode = True, | |
controlnet_conditioning_scale = controlnet_conditioning_scale | |
).images[0] | |
return image | |
def convert_pil_to_opencv(pil_image): | |
return np.array(pil_image) | |
def inv_func(y, | |
c = -712.380100, | |
a = 137.375240, | |
b = 192.435866): | |
return (np.exp((y - c) / a) - np.exp(-c/a)) / 964.8468371292845 | |
def create_point_cloud(img1, img2): | |
if img1.shape != img2.shape: | |
raise ValueError("Both images must have the same dimensions.") | |
h, w, _ = img1.shape | |
points = [] | |
colors = [] | |
for y in range(h): | |
for x in range(w): | |
# ピクセル位置 (x, y) のRGBをXYZとして取得 | |
r, g, b = img1[y, x] | |
r = inv_func(r) * 0.9 | |
g = inv_func(g) / 1.7 * 0.6 | |
b = inv_func(b) | |
r *= 150 | |
g *= 150 | |
b *= 150 | |
points.append([g, b, r]) # X, Y, Z | |
# 対応するピクセル位置の画像2の色を取得 | |
colors.append(img2[y, x] / 255.0) # 色は0〜1にスケール | |
return np.array(points), np.array(colors) | |
def point_cloud_to_glb(points, colors): | |
# Open3Dでポイントクラウドを作成 | |
pc = o3d.geometry.PointCloud() | |
pc.points = o3d.utility.Vector3dVector(points) | |
pc.colors = o3d.utility.Vector3dVector(colors) | |
# 一時的にPLY形式で保存 | |
temp_ply_file = "temp_output.ply" | |
o3d.io.write_point_cloud(temp_ply_file, pc) | |
# PLYをGLBに変換 | |
mesh = trimesh.load(temp_ply_file) | |
glb_file = "output.glb" | |
mesh.export(glb_file) | |
return glb_file | |
def visualize_3d(image1, image2): | |
print("Processing...") | |
# PIL画像をOpenCV形式に変換 | |
img1 = convert_pil_to_opencv(image1) | |
img2 = convert_pil_to_opencv(image2) | |
# ポイントクラウド生成 | |
points, colors = create_point_cloud(img1, img2) | |
# GLB形式に変換 | |
glb_file = point_cloud_to_glb(points, colors) | |
return glb_file | |
def scale_image(original_image): | |
aspect_ratio = original_image.width / original_image.height | |
if original_image.width > original_image.height: | |
new_width = 1024 | |
new_height = round(new_width / aspect_ratio) | |
else: | |
new_height = 1024 | |
new_width = round(new_height * aspect_ratio) | |
resized_original = original_image.resize((new_width, new_height), Image.LANCZOS) | |
return resized_original | |
def get_edge_mode_color(img, edge_width=10): | |
# 外周の10ピクセル領域を取得 | |
left = img.crop((0, 0, edge_width, img.height)) # 左端 | |
right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端 | |
top = img.crop((0, 0, img.width, edge_width)) # 上端 | |
bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端 | |
# 各領域のピクセルデータを取得して結合 | |
colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata()) | |
# 最頻値(mode)を計算 | |
mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得 | |
return mode_color | |
def paste_image(resized_img): | |
# 外周10pxの最頻値を背景色に設定 | |
mode_color = get_edge_mode_color(resized_img, edge_width=10) | |
mode_background = Image.new("RGBA", (1024, 1024), mode_color) | |
mode_background = mode_background.convert('RGB') | |
x = (1024 - resized_img.width) // 2 | |
y = (1024 - resized_img.height) // 2 | |
mode_background.paste(resized_img, (x, y)) | |
return mode_background | |
def outpaint_image(image): | |
if type(image) == type(None): | |
return None | |
resized_img = scale_image(image) | |
image = paste_image(resized_img) | |
return image | |
block = gr.Blocks().queue() | |
with block: | |
gr.Markdown("## BRIA 2.3 ControlNet Pose") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") | |
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) | |
run_button = gr.Button(value="Run") | |
with gr.Column(): | |
with gr.Row(): | |
pose_image_output = gr.Image(label="Pose Image", type="pil", interactive=False) | |
generated_image_output = gr.Image(label="Generated Image", type="pil", interactive=False) | |
run_button.click(fn=process, inputs=[input_image, prompt, negative_prompt, controlnet_conditioning_scale], outputs=[pose_image_output, generated_image_output]) | |
block.launch(debug = True) |