yeq6x's picture
de
8c5f93c
raw
history blame
8.94 kB
import open3d_zerogpu_fix
import spaces
from diffusers import ControlNetModel
from diffusers import StableDiffusionXLControlNetPipeline
from diffusers import EulerAncestralDiscreteScheduler
from PIL import Image
import torch
import numpy as np
import cv2
import gradio as gr
from torchvision import transforms
from controlnet_aux import OpenposeDetector
import random
import open3d as o3d
from collections import Counter
import trimesh
ratios_map = {
0.5:{"width":704,"height":1408},
0.57:{"width":768,"height":1344},
0.68:{"width":832,"height":1216},
0.72:{"width":832,"height":1152},
0.78:{"width":896,"height":1152},
0.82:{"width":896,"height":1088},
0.88:{"width":960,"height":1088},
0.94:{"width":960,"height":1024},
1.00:{"width":1024,"height":1024},
1.13:{"width":1088,"height":960},
1.21:{"width":1088,"height":896},
1.29:{"width":1152,"height":896},
1.38:{"width":1152,"height":832},
1.46:{"width":1216,"height":832},
1.67:{"width":1280,"height":768},
1.75:{"width":1344,"height":768},
2.00:{"width":1408,"height":704}
}
ratios = np.array(list(ratios_map.keys()))
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
controlnet = ControlNetModel.from_pretrained(
"yeq6x/Image2PositionColor_v3",
torch_dtype=torch.float16
).to('cuda')
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"yeq6x/animagine_position_map",
controlnet=controlnet,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
offload_state_dict=True,
).to('cuda').to(torch.float16)
pipe.scheduler = EulerAncestralDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
steps_offset=1
)
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
# pipe.enable_xformers_memory_efficient_attention()
pipe.force_zeros_for_empty_prompt = False
def get_size(init_image):
w,h=init_image.size
curr_ratio = w/h
ind = np.argmin(np.abs(curr_ratio-ratios))
ratio = ratios[ind]
chosen_ratio = ratios_map[ratio]
w,h = chosen_ratio['width'], chosen_ratio['height']
return w,h
def resize_image(image):
image = image.convert('RGB')
w,h = get_size(image)
resized_image = image.resize((w, h))
return resized_image
def resize_image_old(image):
image = image.convert('RGB')
current_size = image.size
if current_size[0] > current_size[1]:
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
else:
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
return resized_image
@spaces.GPU
def generate_(prompt, negative_prompt, pose_image, input_image, controlnet_conditioning_scale):
generator = torch.Generator()
generator.manual_seed(random.randint(0, 2147483647))
images = pipe(
prompt, negative_prompt=negative_prompt, image=pose_image, num_inference_steps=20, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
generator=generator, height=input_image.size[1], width=input_image.size[0],
).images
return images
@spaces.GPU
def process(input_image, prompt, negative_prompt, controlnet_conditioning_scale):
# resize input_image to 1024x1024
input_image = resize_image(input_image)
pose_image = openpose(input_image, include_body=True, include_hand=True, include_face=True)
images = generate_(prompt, negative_prompt, pose_image, input_image, controlnet_conditioning_scale)
return [pose_image,images[0]]
@spaces.GPU
def predict_image(cond_image, prompt, negative_prompt, controlnet_conditioning_scale):
print("predict position map")
global pipe
generator = torch.Generator()
generator.manual_seed(random.randint(0, 2147483647))
image = pipe(
prompt,
negative_prompt=negative_prompt,
image = cond_image,
width=1024,
height=1024,
guidance_scale=8,
num_inference_steps=20,
generator=generator,
guess_mode = True,
controlnet_conditioning_scale = controlnet_conditioning_scale
).images[0]
return image
def convert_pil_to_opencv(pil_image):
return np.array(pil_image)
def inv_func(y,
c = -712.380100,
a = 137.375240,
b = 192.435866):
return (np.exp((y - c) / a) - np.exp(-c/a)) / 964.8468371292845
def create_point_cloud(img1, img2):
if img1.shape != img2.shape:
raise ValueError("Both images must have the same dimensions.")
h, w, _ = img1.shape
points = []
colors = []
for y in range(h):
for x in range(w):
# ピクセル位置 (x, y) のRGBをXYZとして取得
r, g, b = img1[y, x]
r = inv_func(r) * 0.9
g = inv_func(g) / 1.7 * 0.6
b = inv_func(b)
r *= 150
g *= 150
b *= 150
points.append([g, b, r]) # X, Y, Z
# 対応するピクセル位置の画像2の色を取得
colors.append(img2[y, x] / 255.0) # 色は0〜1にスケール
return np.array(points), np.array(colors)
def point_cloud_to_glb(points, colors):
# Open3Dでポイントクラウドを作成
pc = o3d.geometry.PointCloud()
pc.points = o3d.utility.Vector3dVector(points)
pc.colors = o3d.utility.Vector3dVector(colors)
# 一時的にPLY形式で保存
temp_ply_file = "temp_output.ply"
o3d.io.write_point_cloud(temp_ply_file, pc)
# PLYをGLBに変換
mesh = trimesh.load(temp_ply_file)
glb_file = "output.glb"
mesh.export(glb_file)
return glb_file
def visualize_3d(image1, image2):
print("Processing...")
# PIL画像をOpenCV形式に変換
img1 = convert_pil_to_opencv(image1)
img2 = convert_pil_to_opencv(image2)
# ポイントクラウド生成
points, colors = create_point_cloud(img1, img2)
# GLB形式に変換
glb_file = point_cloud_to_glb(points, colors)
return glb_file
def scale_image(original_image):
aspect_ratio = original_image.width / original_image.height
if original_image.width > original_image.height:
new_width = 1024
new_height = round(new_width / aspect_ratio)
else:
new_height = 1024
new_width = round(new_height * aspect_ratio)
resized_original = original_image.resize((new_width, new_height), Image.LANCZOS)
return resized_original
def get_edge_mode_color(img, edge_width=10):
# 外周の10ピクセル領域を取得
left = img.crop((0, 0, edge_width, img.height)) # 左端
right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端
top = img.crop((0, 0, img.width, edge_width)) # 上端
bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端
# 各領域のピクセルデータを取得して結合
colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata())
# 最頻値(mode)を計算
mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得
return mode_color
def paste_image(resized_img):
# 外周10pxの最頻値を背景色に設定
mode_color = get_edge_mode_color(resized_img, edge_width=10)
mode_background = Image.new("RGBA", (1024, 1024), mode_color)
mode_background = mode_background.convert('RGB')
x = (1024 - resized_img.width) // 2
y = (1024 - resized_img.height) // 2
mode_background.paste(resized_img, (x, y))
return mode_background
def outpaint_image(image):
if type(image) == type(None):
return None
resized_img = scale_image(image)
image = paste_image(resized_img)
return image
block = gr.Blocks().queue()
with block:
gr.Markdown("## BRIA 2.3 ControlNet Pose")
with gr.Row():
with gr.Column():
input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
run_button = gr.Button(value="Run")
with gr.Column():
with gr.Row():
pose_image_output = gr.Image(label="Pose Image", type="pil", interactive=False)
generated_image_output = gr.Image(label="Generated Image", type="pil", interactive=False)
run_button.click(fn=process, inputs=[input_image, prompt, negative_prompt, controlnet_conditioning_scale], outputs=[pose_image_output, generated_image_output])
block.launch(debug = True)