Spaces:
Sleeping
Sleeping
File size: 8,937 Bytes
8c5f93c 48d3a70 738b300 bb35a51 738b300 723c997 b7a545c f6ceb76 f611314 738b300 723c997 738b300 f611314 2867bc8 f611314 2867bc8 f611314 741ac19 738b300 f611314 738b300 54507dc fab2b8a 8c5f93c f611314 8c5f93c f611314 2d7003c f611314 8c5f93c 738b300 f611314 723c997 8c5f93c 723c997 a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c a5e97ce b7a545c 738b300 3f17ce4 738b300 8c5f93c 738b300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import open3d_zerogpu_fix
import spaces
from diffusers import ControlNetModel
from diffusers import StableDiffusionXLControlNetPipeline
from diffusers import EulerAncestralDiscreteScheduler
from PIL import Image
import torch
import numpy as np
import cv2
import gradio as gr
from torchvision import transforms
from controlnet_aux import OpenposeDetector
import random
import open3d as o3d
from collections import Counter
import trimesh
ratios_map = {
0.5:{"width":704,"height":1408},
0.57:{"width":768,"height":1344},
0.68:{"width":832,"height":1216},
0.72:{"width":832,"height":1152},
0.78:{"width":896,"height":1152},
0.82:{"width":896,"height":1088},
0.88:{"width":960,"height":1088},
0.94:{"width":960,"height":1024},
1.00:{"width":1024,"height":1024},
1.13:{"width":1088,"height":960},
1.21:{"width":1088,"height":896},
1.29:{"width":1152,"height":896},
1.38:{"width":1152,"height":832},
1.46:{"width":1216,"height":832},
1.67:{"width":1280,"height":768},
1.75:{"width":1344,"height":768},
2.00:{"width":1408,"height":704}
}
ratios = np.array(list(ratios_map.keys()))
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
controlnet = ControlNetModel.from_pretrained(
"yeq6x/Image2PositionColor_v3",
torch_dtype=torch.float16
).to('cuda')
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"yeq6x/animagine_position_map",
controlnet=controlnet,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
offload_state_dict=True,
).to('cuda').to(torch.float16)
pipe.scheduler = EulerAncestralDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
steps_offset=1
)
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
# pipe.enable_xformers_memory_efficient_attention()
pipe.force_zeros_for_empty_prompt = False
def get_size(init_image):
w,h=init_image.size
curr_ratio = w/h
ind = np.argmin(np.abs(curr_ratio-ratios))
ratio = ratios[ind]
chosen_ratio = ratios_map[ratio]
w,h = chosen_ratio['width'], chosen_ratio['height']
return w,h
def resize_image(image):
image = image.convert('RGB')
w,h = get_size(image)
resized_image = image.resize((w, h))
return resized_image
def resize_image_old(image):
image = image.convert('RGB')
current_size = image.size
if current_size[0] > current_size[1]:
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
else:
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
return resized_image
@spaces.GPU
def generate_(prompt, negative_prompt, pose_image, input_image, controlnet_conditioning_scale):
generator = torch.Generator()
generator.manual_seed(random.randint(0, 2147483647))
images = pipe(
prompt, negative_prompt=negative_prompt, image=pose_image, num_inference_steps=20, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
generator=generator, height=input_image.size[1], width=input_image.size[0],
).images
return images
@spaces.GPU
def process(input_image, prompt, negative_prompt, controlnet_conditioning_scale):
# resize input_image to 1024x1024
input_image = resize_image(input_image)
pose_image = openpose(input_image, include_body=True, include_hand=True, include_face=True)
images = generate_(prompt, negative_prompt, pose_image, input_image, controlnet_conditioning_scale)
return [pose_image,images[0]]
@spaces.GPU
def predict_image(cond_image, prompt, negative_prompt, controlnet_conditioning_scale):
print("predict position map")
global pipe
generator = torch.Generator()
generator.manual_seed(random.randint(0, 2147483647))
image = pipe(
prompt,
negative_prompt=negative_prompt,
image = cond_image,
width=1024,
height=1024,
guidance_scale=8,
num_inference_steps=20,
generator=generator,
guess_mode = True,
controlnet_conditioning_scale = controlnet_conditioning_scale
).images[0]
return image
def convert_pil_to_opencv(pil_image):
return np.array(pil_image)
def inv_func(y,
c = -712.380100,
a = 137.375240,
b = 192.435866):
return (np.exp((y - c) / a) - np.exp(-c/a)) / 964.8468371292845
def create_point_cloud(img1, img2):
if img1.shape != img2.shape:
raise ValueError("Both images must have the same dimensions.")
h, w, _ = img1.shape
points = []
colors = []
for y in range(h):
for x in range(w):
# ピクセル位置 (x, y) のRGBをXYZとして取得
r, g, b = img1[y, x]
r = inv_func(r) * 0.9
g = inv_func(g) / 1.7 * 0.6
b = inv_func(b)
r *= 150
g *= 150
b *= 150
points.append([g, b, r]) # X, Y, Z
# 対応するピクセル位置の画像2の色を取得
colors.append(img2[y, x] / 255.0) # 色は0〜1にスケール
return np.array(points), np.array(colors)
def point_cloud_to_glb(points, colors):
# Open3Dでポイントクラウドを作成
pc = o3d.geometry.PointCloud()
pc.points = o3d.utility.Vector3dVector(points)
pc.colors = o3d.utility.Vector3dVector(colors)
# 一時的にPLY形式で保存
temp_ply_file = "temp_output.ply"
o3d.io.write_point_cloud(temp_ply_file, pc)
# PLYをGLBに変換
mesh = trimesh.load(temp_ply_file)
glb_file = "output.glb"
mesh.export(glb_file)
return glb_file
def visualize_3d(image1, image2):
print("Processing...")
# PIL画像をOpenCV形式に変換
img1 = convert_pil_to_opencv(image1)
img2 = convert_pil_to_opencv(image2)
# ポイントクラウド生成
points, colors = create_point_cloud(img1, img2)
# GLB形式に変換
glb_file = point_cloud_to_glb(points, colors)
return glb_file
def scale_image(original_image):
aspect_ratio = original_image.width / original_image.height
if original_image.width > original_image.height:
new_width = 1024
new_height = round(new_width / aspect_ratio)
else:
new_height = 1024
new_width = round(new_height * aspect_ratio)
resized_original = original_image.resize((new_width, new_height), Image.LANCZOS)
return resized_original
def get_edge_mode_color(img, edge_width=10):
# 外周の10ピクセル領域を取得
left = img.crop((0, 0, edge_width, img.height)) # 左端
right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端
top = img.crop((0, 0, img.width, edge_width)) # 上端
bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端
# 各領域のピクセルデータを取得して結合
colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata())
# 最頻値(mode)を計算
mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得
return mode_color
def paste_image(resized_img):
# 外周10pxの最頻値を背景色に設定
mode_color = get_edge_mode_color(resized_img, edge_width=10)
mode_background = Image.new("RGBA", (1024, 1024), mode_color)
mode_background = mode_background.convert('RGB')
x = (1024 - resized_img.width) // 2
y = (1024 - resized_img.height) // 2
mode_background.paste(resized_img, (x, y))
return mode_background
def outpaint_image(image):
if type(image) == type(None):
return None
resized_img = scale_image(image)
image = paste_image(resized_img)
return image
block = gr.Blocks().queue()
with block:
gr.Markdown("## BRIA 2.3 ControlNet Pose")
with gr.Row():
with gr.Column():
input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
run_button = gr.Button(value="Run")
with gr.Column():
with gr.Row():
pose_image_output = gr.Image(label="Pose Image", type="pil", interactive=False)
generated_image_output = gr.Image(label="Generated Image", type="pil", interactive=False)
run_button.click(fn=process, inputs=[input_image, prompt, negative_prompt, controlnet_conditioning_scale], outputs=[pose_image_output, generated_image_output])
block.launch(debug = True) |