Spaces:
Sleeping
Sleeping
Expose function
#5
by
merve
HF staff
- opened
app.py
CHANGED
@@ -163,152 +163,146 @@ def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, enti
|
|
163 |
return pil_image
|
164 |
|
165 |
|
166 |
-
def main():
|
167 |
|
168 |
-
|
169 |
|
170 |
-
|
171 |
-
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)
|
207 |
-
|
208 |
-
color_id = -1
|
209 |
-
entity_info = []
|
210 |
-
filtered_entities = []
|
211 |
-
for entity in entities:
|
212 |
-
entity_name, (start, end), bboxes = entity
|
213 |
-
if start == end:
|
214 |
-
# skip bounding bbox without a `phrase` associated
|
215 |
-
continue
|
216 |
-
color_id += 1
|
217 |
-
# for bbox_id, _ in enumerate(bboxes):
|
218 |
-
# if start is None and bbox_id > 0:
|
219 |
-
# color_id += 1
|
220 |
-
entity_info.append(((start, end), color_id))
|
221 |
-
filtered_entities.append(entity)
|
222 |
-
|
223 |
-
colored_text = []
|
224 |
-
prev_start = 0
|
225 |
-
end = 0
|
226 |
-
for idx, ((start, end), color_id) in enumerate(entity_info):
|
227 |
-
if start > prev_start:
|
228 |
-
colored_text.append((processed_text[prev_start:start], None))
|
229 |
-
colored_text.append((processed_text[start:end], f"{color_id}"))
|
230 |
-
prev_start = end
|
231 |
-
|
232 |
-
if end < len(processed_text):
|
233 |
-
colored_text.append((processed_text[end:len(processed_text)], None))
|
234 |
-
|
235 |
-
return annotated_image, colored_text, str(filtered_entities)
|
236 |
-
|
237 |
-
term_of_use = """
|
238 |
-
### Terms of use
|
239 |
-
By using this model, users are required to agree to the following terms:
|
240 |
-
The model is intended for academic and research purposes.
|
241 |
-
The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work.
|
242 |
-
The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content.
|
243 |
-
|
244 |
-
### License
|
245 |
-
This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct).
|
246 |
-
"""
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
return pil_image
|
164 |
|
165 |
|
|
|
166 |
|
167 |
+
ckpt = "microsoft/kosmos-2-patch14-224"
|
168 |
|
169 |
+
model = AutoModelForVision2Seq.from_pretrained(ckpt).to("cuda")
|
170 |
+
processor = AutoProcessor.from_pretrained(ckpt)
|
171 |
|
172 |
+
def generate_predictions(image_input, text_input):
|
173 |
|
174 |
+
# Save the image and load it again to match the original Kosmos-2 demo.
|
175 |
+
# (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
|
176 |
+
user_image_path = "/tmp/user_input_test_image.jpg"
|
177 |
+
image_input.save(user_image_path)
|
178 |
+
# This might give different results from the original argument `image_input`
|
179 |
+
image_input = Image.open(user_image_path)
|
180 |
|
181 |
+
if text_input == "Brief":
|
182 |
+
text_input = "<grounding>An image of"
|
183 |
+
elif text_input == "Detailed":
|
184 |
+
text_input = "<grounding>Describe this image in detail:"
|
185 |
+
else:
|
186 |
+
text_input = f"<grounding>{text_input}"
|
187 |
+
|
188 |
+
inputs = processor(text=text_input, images=image_input, return_tensors="pt").to("cuda")
|
189 |
+
|
190 |
+
generated_ids = model.generate(
|
191 |
+
pixel_values=inputs["pixel_values"],
|
192 |
+
input_ids=inputs["input_ids"],
|
193 |
+
attention_mask=inputs["attention_mask"],
|
194 |
+
image_embeds=None,
|
195 |
+
image_embeds_position_mask=inputs["image_embeds_position_mask"],
|
196 |
+
use_cache=True,
|
197 |
+
max_new_tokens=128,
|
198 |
+
)
|
199 |
+
|
200 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
201 |
+
|
202 |
+
# By default, the generated text is cleanup and the entities are extracted.
|
203 |
+
processed_text, entities = processor.post_process_generation(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)
|
206 |
+
|
207 |
+
color_id = -1
|
208 |
+
entity_info = []
|
209 |
+
filtered_entities = []
|
210 |
+
for entity in entities:
|
211 |
+
entity_name, (start, end), bboxes = entity
|
212 |
+
if start == end:
|
213 |
+
# skip bounding bbox without a `phrase` associated
|
214 |
+
continue
|
215 |
+
color_id += 1
|
216 |
+
# for bbox_id, _ in enumerate(bboxes):
|
217 |
+
# if start is None and bbox_id > 0:
|
218 |
+
# color_id += 1
|
219 |
+
entity_info.append(((start, end), color_id))
|
220 |
+
filtered_entities.append(entity)
|
221 |
+
|
222 |
+
colored_text = []
|
223 |
+
prev_start = 0
|
224 |
+
end = 0
|
225 |
+
for idx, ((start, end), color_id) in enumerate(entity_info):
|
226 |
+
if start > prev_start:
|
227 |
+
colored_text.append((processed_text[prev_start:start], None))
|
228 |
+
colored_text.append((processed_text[start:end], f"{color_id}"))
|
229 |
+
prev_start = end
|
230 |
+
|
231 |
+
if end < len(processed_text):
|
232 |
+
colored_text.append((processed_text[end:len(processed_text)], None))
|
233 |
+
|
234 |
+
return annotated_image, colored_text, str(filtered_entities)
|
235 |
+
|
236 |
+
term_of_use = """
|
237 |
+
### Terms of use
|
238 |
+
By using this model, users are required to agree to the following terms:
|
239 |
+
The model is intended for academic and research purposes.
|
240 |
+
The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work.
|
241 |
+
The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content.
|
242 |
+
|
243 |
+
### License
|
244 |
+
This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct).
|
245 |
+
"""
|
246 |
+
|
247 |
+
with gr.Blocks(title="Kosmos-2", theme=gr.themes.Base()).queue() as demo:
|
248 |
+
gr.Markdown(("""
|
249 |
+
# Kosmos-2: Grounding Multimodal Large Language Models to the World
|
250 |
+
[[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2)
|
251 |
+
"""))
|
252 |
+
with gr.Row():
|
253 |
+
with gr.Column():
|
254 |
+
image_input = gr.Image(type="pil", label="Test Image")
|
255 |
+
text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief")
|
256 |
+
|
257 |
+
run_button = gr.Button(label="Run", visible=True)
|
258 |
+
|
259 |
+
with gr.Column():
|
260 |
+
image_output = gr.Image(type="pil")
|
261 |
+
text_output1 = gr.HighlightedText(
|
262 |
+
label="Generated Description",
|
263 |
+
combine_adjacent=False,
|
264 |
+
show_legend=True,
|
265 |
+
).style(color_map=color_map)
|
266 |
+
|
267 |
+
with gr.Row():
|
268 |
+
with gr.Column():
|
269 |
+
gr.Examples(examples=[
|
270 |
+
["images/two_dogs.jpg", "Detailed"],
|
271 |
+
["images/snowman.png", "Brief"],
|
272 |
+
["images/man_ball.png", "Detailed"],
|
273 |
+
], inputs=[image_input, text_input])
|
274 |
+
with gr.Column():
|
275 |
+
gr.Examples(examples=[
|
276 |
+
["images/six_planes.png", "Brief"],
|
277 |
+
["images/quadrocopter.jpg", "Brief"],
|
278 |
+
["images/carnaby_street.jpg", "Brief"],
|
279 |
+
], inputs=[image_input, text_input])
|
280 |
+
gr.Markdown(term_of_use)
|
281 |
+
|
282 |
+
# record which text span (label) is selected
|
283 |
+
selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
|
284 |
+
|
285 |
+
# record the current `entities`
|
286 |
+
entity_output = gr.Textbox(visible=False)
|
287 |
+
|
288 |
+
# get the current selected span label
|
289 |
+
def get_text_span_label(evt: gr.SelectData):
|
290 |
+
if evt.value[-1] is None:
|
291 |
+
return -1
|
292 |
+
return int(evt.value[-1])
|
293 |
+
# and set this information to `selected`
|
294 |
+
text_output1.select(get_text_span_label, None, selected)
|
295 |
+
|
296 |
+
# update output image when we change the span (enity) selection
|
297 |
+
def update_output_image(img_input, image_output, entities, idx):
|
298 |
+
entities = ast.literal_eval(entities)
|
299 |
+
updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
|
300 |
+
return updated_image
|
301 |
+
selected.change(update_output_image, [image_input, image_output, entity_output, selected], [image_output])
|
302 |
+
|
303 |
+
run_button.click(fn=generate_predictions,
|
304 |
+
inputs=[image_input, text_input],
|
305 |
+
outputs=[image_output, text_output1, entity_output],
|
306 |
+
show_progress=True, queue=True)
|
307 |
+
|
308 |
+
demo.launch(share=False)
|