roboAssist_demo / web_demo_audio.py
y5shen's picture
Upload folder using huggingface_hub
81463e4 verified
import gradio as gr
import modelscope_studio as mgr
import librosa
from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
from argparse import ArgumentParser
DEFAULT_CKPT_PATH = 'Qwen/Qwen2-Audio-7B-Instruct'
def _get_args():
parser = ArgumentParser()
parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
parser.add_argument("--inbrowser", action="store_true", default=False,
help="Automatically launch the interface in a new tab on the default browser.")
parser.add_argument("--server-port", type=int, default=8000,
help="Demo server port.")
parser.add_argument("--server-name", type=str, default="127.0.0.1",
help="Demo server name.")
args = parser.parse_args()
return args
def add_text(chatbot, task_history, input):
text_content = input.text
content = []
if len(input.files) > 0:
for i in input.files:
content.append({'type': 'audio', 'audio_url': i.path})
if text_content:
content.append({'type': 'text', 'text': text_content})
task_history.append({"role": "user", "content": content})
chatbot.append([{
"text": input.text,
"files": input.files,
}, None])
return chatbot, task_history, None
def add_file(chatbot, task_history, audio_file):
"""Add audio file to the chat history."""
task_history.append({"role": "user", "content": [{"audio": audio_file.name}]})
chatbot.append((f"[Audio file: {audio_file.name}]", None))
return chatbot, task_history
def reset_user_input():
"""Reset the user input field."""
return gr.Textbox.update(value='')
def reset_state(task_history):
"""Reset the chat history."""
return [], []
def regenerate(chatbot, task_history):
"""Regenerate the last bot response."""
if task_history and task_history[-1]['role'] == 'assistant':
task_history.pop()
chatbot.pop()
if task_history:
chatbot, task_history = predict(chatbot, task_history)
return chatbot, task_history
def predict(chatbot, task_history):
"""Generate a response from the model."""
print(f"{task_history=}")
print(f"{chatbot=}")
text = processor.apply_chat_template(task_history, add_generation_prompt=True, tokenize=False)
audios = []
for message in task_history:
if isinstance(message["content"], list):
for ele in message["content"]:
if ele["type"] == "audio":
audios.append(
librosa.load(ele['audio_url'], sr=processor.feature_extractor.sampling_rate)[0]
)
if len(audios)==0:
audios=None
print(f"{text=}")
print(f"{audios=}")
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
if not _get_args().cpu_only:
inputs["input_ids"] = inputs.input_ids.to("cuda")
generate_ids = model.generate(**inputs, max_length=256)
generate_ids = generate_ids[:, inputs.input_ids.size(1):]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(f"{response=}")
task_history.append({'role': 'assistant',
'content': response})
chatbot.append((None, response)) # Add the response to chatbot
return chatbot, task_history
def _launch_demo(args):
with gr.Blocks() as demo:
gr.Markdown(
"""<p align="center"><img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/assets/blog/qwenaudio/qwen2audio_logo.png" style="height: 80px"/><p>""")
gr.Markdown("""<center><font size=8>Qwen2-Audio-Instruct Bot</center>""")
gr.Markdown(
"""\
<center><font size=3>This WebUI is based on Qwen2-Audio-Instruct, developed by Alibaba Cloud. \
(本WebUI基于Qwen2-Audio-Instruct打造,实现聊天机器人功能。)</center>""")
gr.Markdown("""\
<center><font size=4>Qwen2-Audio <a href="https://modelscope.cn/models/qwen/Qwen2-Audio-7B">🤖 </a>
| <a href="https://huggingface.co/Qwen/Qwen2-Audio-7B">🤗</a>&nbsp |
Qwen2-Audio-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2-Audio-7B-Instruct">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen2-Audio-7B-Instruct">🤗</a>&nbsp |
&nbsp<a href="https://github.com/QwenLM/Qwen2-Audio">Github</a></center>""")
chatbot = mgr.Chatbot(label='Qwen2-Audio-7B-Instruct', elem_classes="control-height", height=750)
user_input = mgr.MultimodalInput(
interactive=True,
sources=['microphone', 'upload'],
submit_button_props=dict(value="🚀 Submit (发送)"),
upload_button_props=dict(value="📁 Upload (上传文件)", show_progress=True),
)
task_history = gr.State([])
with gr.Row():
empty_bin = gr.Button("🧹 Clear History (清除历史)")
regen_btn = gr.Button("🤔️ Regenerate (重试)")
user_input.submit(fn=add_text,
inputs=[chatbot, task_history, user_input],
outputs=[chatbot, task_history, user_input]).then(
predict, [chatbot, task_history], [chatbot, task_history], show_progress=True
)
empty_bin.click(reset_state, outputs=[chatbot, task_history], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot, task_history], show_progress=True)
demo.queue().launch(
share=True,
inbrowser=args.inbrowser,
server_port=args.server_port,
server_name=args.server_name,
)
if __name__ == "__main__":
args = _get_args()
if args.cpu_only:
device_map = "cpu"
else:
device_map = "auto"
model = Qwen2AudioForConditionalGeneration.from_pretrained(
args.checkpoint_path,
torch_dtype="auto",
device_map=device_map,
resume_download=True,
).eval()
model.generation_config.max_new_tokens = 2048 # For chat.
print("generation_config", model.generation_config)
processor = AutoProcessor.from_pretrained(args.checkpoint_path, resume_download=True)
_launch_demo(args)