File size: 6,430 Bytes
81463e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import modelscope_studio as mgr
import librosa
from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
from argparse import ArgumentParser

DEFAULT_CKPT_PATH = 'Qwen/Qwen2-Audio-7B-Instruct'


def _get_args():
    parser = ArgumentParser()
    parser.add_argument("-c", "--checkpoint-path", type=str, default=DEFAULT_CKPT_PATH,
                        help="Checkpoint name or path, default to %(default)r")
    parser.add_argument("--cpu-only", action="store_true", help="Run demo with CPU only")
    parser.add_argument("--inbrowser", action="store_true", default=False,
                        help="Automatically launch the interface in a new tab on the default browser.")
    parser.add_argument("--server-port", type=int, default=8000,
                        help="Demo server port.")
    parser.add_argument("--server-name", type=str, default="127.0.0.1",
                        help="Demo server name.")

    args = parser.parse_args()
    return args


def add_text(chatbot, task_history, input):
    text_content = input.text
    content = []
    if len(input.files) > 0:
        for i in input.files:
            content.append({'type': 'audio', 'audio_url': i.path})
    if text_content:
        content.append({'type': 'text', 'text': text_content})
    task_history.append({"role": "user", "content": content})

    chatbot.append([{
        "text": input.text,
        "files": input.files,
    }, None])
    return chatbot, task_history, None


def add_file(chatbot, task_history, audio_file):
    """Add audio file to the chat history."""
    task_history.append({"role": "user", "content": [{"audio": audio_file.name}]})
    chatbot.append((f"[Audio file: {audio_file.name}]", None))
    return chatbot, task_history


def reset_user_input():
    """Reset the user input field."""
    return gr.Textbox.update(value='')


def reset_state(task_history):
    """Reset the chat history."""
    return [], []


def regenerate(chatbot, task_history):
    """Regenerate the last bot response."""
    if task_history and task_history[-1]['role'] == 'assistant':
        task_history.pop()
        chatbot.pop()
    if task_history:
        chatbot, task_history = predict(chatbot, task_history)
    return chatbot, task_history


def predict(chatbot, task_history):
    """Generate a response from the model."""
    print(f"{task_history=}")
    print(f"{chatbot=}")
    text = processor.apply_chat_template(task_history, add_generation_prompt=True, tokenize=False)
    audios = []
    for message in task_history:
        if isinstance(message["content"], list):
            for ele in message["content"]:
                if ele["type"] == "audio":
                    audios.append(
                        librosa.load(ele['audio_url'], sr=processor.feature_extractor.sampling_rate)[0]
                    )

    if len(audios)==0:
        audios=None
    print(f"{text=}")
    print(f"{audios=}")
    inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
    if not _get_args().cpu_only:
        inputs["input_ids"] = inputs.input_ids.to("cuda")

    generate_ids = model.generate(**inputs, max_length=256)
    generate_ids = generate_ids[:, inputs.input_ids.size(1):]

    response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    print(f"{response=}")
    task_history.append({'role': 'assistant',
                         'content': response})
    chatbot.append((None, response))  # Add the response to chatbot
    return chatbot, task_history


def _launch_demo(args):
    with gr.Blocks() as demo:
        gr.Markdown(
            """<p align="center"><img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/assets/blog/qwenaudio/qwen2audio_logo.png" style="height: 80px"/><p>""")
        gr.Markdown("""<center><font size=8>Qwen2-Audio-Instruct Bot</center>""")
        gr.Markdown(
            """\
    <center><font size=3>This WebUI is based on Qwen2-Audio-Instruct, developed by Alibaba Cloud. \
    (本WebUI基于Qwen2-Audio-Instruct打造,实现聊天机器人功能。)</center>""")
        gr.Markdown("""\
    <center><font size=4>Qwen2-Audio <a href="https://modelscope.cn/models/qwen/Qwen2-Audio-7B">🤖 </a> 
    | <a href="https://huggingface.co/Qwen/Qwen2-Audio-7B">🤗</a>&nbsp | 
    Qwen2-Audio-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2-Audio-7B-Instruct">🤖 </a> | 
    <a href="https://huggingface.co/Qwen/Qwen2-Audio-7B-Instruct">🤗</a>&nbsp | 
    &nbsp<a href="https://github.com/QwenLM/Qwen2-Audio">Github</a></center>""")
        chatbot = mgr.Chatbot(label='Qwen2-Audio-7B-Instruct', elem_classes="control-height", height=750)

        user_input = mgr.MultimodalInput(
            interactive=True,
            sources=['microphone', 'upload'],
            submit_button_props=dict(value="🚀 Submit (发送)"),
            upload_button_props=dict(value="📁 Upload (上传文件)", show_progress=True),
        )
        task_history = gr.State([])

        with gr.Row():
            empty_bin = gr.Button("🧹 Clear History (清除历史)")
            regen_btn = gr.Button("🤔️ Regenerate (重试)")

        user_input.submit(fn=add_text,
                          inputs=[chatbot, task_history, user_input],
                          outputs=[chatbot, task_history, user_input]).then(
            predict, [chatbot, task_history], [chatbot, task_history], show_progress=True
        )
        empty_bin.click(reset_state, outputs=[chatbot, task_history], show_progress=True)
        regen_btn.click(regenerate, [chatbot, task_history], [chatbot, task_history], show_progress=True)

    demo.queue().launch(
        share=True,
        inbrowser=args.inbrowser,
        server_port=args.server_port,
        server_name=args.server_name,
    )


if __name__ == "__main__":
    args = _get_args()
    if args.cpu_only:
        device_map = "cpu"
    else:
        device_map = "auto"

    model = Qwen2AudioForConditionalGeneration.from_pretrained(
        args.checkpoint_path,
        torch_dtype="auto",
        device_map=device_map,
        resume_download=True,
    ).eval()
    model.generation_config.max_new_tokens = 2048  # For chat.
    print("generation_config", model.generation_config)
    processor = AutoProcessor.from_pretrained(args.checkpoint_path, resume_download=True)
    _launch_demo(args)