xiaoxishui commited on
Commit
3ecb541
·
1 Parent(s): b2ad1a6

Add LAGENT source code files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. lagent/examples/.ipynb_checkpoints/agent_api_web_demo-checkpoint.py +198 -0
  2. lagent/examples/.ipynb_checkpoints/multi_agents_api_web_demo-checkpoint.py +198 -0
  3. lagent/lagent.egg-info/PKG-INFO +600 -0
  4. lagent/lagent.egg-info/SOURCES.txt +71 -0
  5. lagent/lagent.egg-info/dependency_links.txt +1 -0
  6. lagent/lagent.egg-info/requires.txt +59 -0
  7. lagent/lagent.egg-info/top_level.txt +1 -0
  8. lagent/lagent/__pycache__/__init__.cpython-310.pyc +0 -0
  9. lagent/lagent/__pycache__/schema.cpython-310.pyc +0 -0
  10. lagent/lagent/__pycache__/version.cpython-310.pyc +0 -0
  11. lagent/lagent/actions/.ipynb_checkpoints/__init__-checkpoint.py +26 -0
  12. lagent/lagent/actions/.ipynb_checkpoints/weather_query-checkpoint.py +71 -0
  13. lagent/lagent/actions/__pycache__/__init__.cpython-310.pyc +0 -0
  14. lagent/lagent/actions/__pycache__/action_executor.cpython-310.pyc +0 -0
  15. lagent/lagent/actions/__pycache__/arxiv_search.cpython-310.pyc +0 -0
  16. lagent/lagent/actions/__pycache__/base_action.cpython-310.pyc +0 -0
  17. lagent/lagent/actions/__pycache__/bing_map.cpython-310.pyc +0 -0
  18. lagent/lagent/actions/__pycache__/builtin_actions.cpython-310.pyc +0 -0
  19. lagent/lagent/actions/__pycache__/google_scholar_search.cpython-310.pyc +0 -0
  20. lagent/lagent/actions/__pycache__/google_search.cpython-310.pyc +0 -0
  21. lagent/lagent/actions/__pycache__/ipython_interactive.cpython-310.pyc +0 -0
  22. lagent/lagent/actions/__pycache__/ipython_interpreter.cpython-310.pyc +0 -0
  23. lagent/lagent/actions/__pycache__/ipython_manager.cpython-310.pyc +0 -0
  24. lagent/lagent/actions/__pycache__/parser.cpython-310.pyc +0 -0
  25. lagent/lagent/actions/__pycache__/ppt.cpython-310.pyc +0 -0
  26. lagent/lagent/actions/__pycache__/python_interpreter.cpython-310.pyc +0 -0
  27. lagent/lagent/actions/__pycache__/weather_query.cpython-310.pyc +0 -0
  28. lagent/lagent/actions/__pycache__/web_browser.cpython-310.pyc +0 -0
  29. lagent/lagent/agents/__pycache__/__init__.cpython-310.pyc +0 -0
  30. lagent/lagent/agents/__pycache__/agent.cpython-310.pyc +0 -0
  31. lagent/lagent/agents/__pycache__/react.cpython-310.pyc +0 -0
  32. lagent/lagent/agents/__pycache__/stream.cpython-310.pyc +0 -0
  33. lagent/lagent/agents/aggregator/__pycache__/__init__.cpython-310.pyc +0 -0
  34. lagent/lagent/agents/aggregator/__pycache__/default_aggregator.cpython-310.pyc +0 -0
  35. lagent/lagent/agents/aggregator/__pycache__/tool_aggregator.cpython-310.pyc +0 -0
  36. lagent/lagent/hooks/__pycache__/__init__.cpython-310.pyc +0 -0
  37. lagent/lagent/hooks/__pycache__/action_preprocessor.cpython-310.pyc +0 -0
  38. lagent/lagent/hooks/__pycache__/hook.cpython-310.pyc +0 -0
  39. lagent/lagent/hooks/__pycache__/logger.cpython-310.pyc +0 -0
  40. lagent/lagent/llms/__pycache__/__init__.cpython-310.pyc +0 -0
  41. lagent/lagent/llms/__pycache__/base_api.cpython-310.pyc +0 -0
  42. lagent/lagent/llms/__pycache__/base_llm.cpython-310.pyc +0 -0
  43. lagent/lagent/llms/__pycache__/huggingface.cpython-310.pyc +0 -0
  44. lagent/lagent/llms/__pycache__/lmdeploy_wrapper.cpython-310.pyc +0 -0
  45. lagent/lagent/llms/__pycache__/meta_template.cpython-310.pyc +0 -0
  46. lagent/lagent/llms/__pycache__/openai.cpython-310.pyc +0 -0
  47. lagent/lagent/llms/__pycache__/sensenova.cpython-310.pyc +0 -0
  48. lagent/lagent/llms/__pycache__/vllm_wrapper.cpython-310.pyc +0 -0
  49. lagent/lagent/memory/__pycache__/__init__.cpython-310.pyc +0 -0
  50. lagent/lagent/memory/__pycache__/base_memory.cpython-310.pyc +0 -0
lagent/examples/.ipynb_checkpoints/agent_api_web_demo-checkpoint.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import os
3
+ from typing import List
4
+ import streamlit as st
5
+ from lagent.actions import ArxivSearch
6
+ from lagent.prompts.parsers import PluginParser
7
+ from lagent.agents.stream import INTERPRETER_CN, META_CN, PLUGIN_CN, AgentForInternLM, get_plugin_prompt
8
+ from lagent.llms import GPTAPI
9
+ from lagent.actions import ArxivSearch, WeatherQuery
10
+
11
+
12
+ class SessionState:
13
+ """管理会话状态的类。"""
14
+
15
+ def init_state(self):
16
+ """初始化会话状态变量。"""
17
+ st.session_state['assistant'] = [] # 助手消息历史
18
+ st.session_state['user'] = [] # 用户消息历史
19
+ # 初始化插件列表
20
+ action_list = [
21
+ ArxivSearch(),
22
+ WeatherQuery(),
23
+ ]
24
+ st.session_state['plugin_map'] = {action.name: action for action in action_list}
25
+ st.session_state['model_map'] = {} # 存储模型实例
26
+ st.session_state['model_selected'] = None # 当前选定模型
27
+ st.session_state['plugin_actions'] = set() # 当前激活插件
28
+ st.session_state['history'] = [] # 聊天历史
29
+ st.session_state['api_base'] = None # 初始化API base地址
30
+
31
+ def clear_state(self):
32
+ """清除当前会话状态。"""
33
+ st.session_state['assistant'] = []
34
+ st.session_state['user'] = []
35
+ st.session_state['model_selected'] = None
36
+
37
+
38
+ class StreamlitUI:
39
+ """管理 Streamlit 界面的类。"""
40
+
41
+ def __init__(self, session_state: SessionState):
42
+ self.session_state = session_state
43
+ self.plugin_action = [] # 当前选定的插件
44
+ # 初始化提示词
45
+ self.meta_prompt = META_CN
46
+ self.plugin_prompt = PLUGIN_CN
47
+ self.init_streamlit()
48
+
49
+ def init_streamlit(self):
50
+ """初始化 Streamlit 的 UI 设置。"""
51
+ st.set_page_config(
52
+ layout='wide',
53
+ page_title='lagent-web',
54
+ page_icon='./docs/imgs/lagent_icon.png'
55
+ )
56
+ st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
57
+
58
+ def setup_sidebar(self):
59
+ """设置侧边栏,选择模型和插件。"""
60
+ # 模型名称和 API Base 输入框
61
+ model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
62
+
63
+ # ================================== 硅基流动的API ==================================
64
+ # 注意,如果采用硅基流动API,模型名称需要更改为:internlm/internlm2_5-7b-chat 或者 internlm/internlm2_5-20b-chat
65
+ # api_base = st.sidebar.text_input(
66
+ # 'API Base 地址:', value='https://api.siliconflow.cn/v1/chat/completions'
67
+ # )
68
+ # ================================== 浦语官方的API ==================================
69
+ api_base = st.sidebar.text_input(
70
+ 'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
71
+ )
72
+ # ==================================================================================
73
+ # 插件选择
74
+ plugin_name = st.sidebar.multiselect(
75
+ '插件选择',
76
+ options=list(st.session_state['plugin_map'].keys()),
77
+ default=[],
78
+ )
79
+
80
+ # 根据选择的插件生成插件操作列表
81
+ self.plugin_action = [st.session_state['plugin_map'][name] for name in plugin_name]
82
+
83
+ # 动态生成插件提示
84
+ if self.plugin_action:
85
+ self.plugin_prompt = get_plugin_prompt(self.plugin_action)
86
+
87
+ # 清空对话按钮
88
+ if st.sidebar.button('清空对话', key='clear'):
89
+ self.session_state.clear_state()
90
+
91
+ return model_name, api_base, self.plugin_action
92
+
93
+ def initialize_chatbot(self, model_name, api_base, plugin_action):
94
+ """初始化 GPTAPI 实例作为 chatbot。"""
95
+ token = os.getenv("token")
96
+ if not token:
97
+ st.error("未检测到环境变量 `token`,请设置环境变量,例如 `export token='your_token_here'` 后重新运行 X﹏X")
98
+ st.stop() # 停止运行应用
99
+
100
+ # 创建完整的 meta_prompt,保留原始结构并动态插入侧边栏配置
101
+ meta_prompt = [
102
+ {"role": "system", "content": self.meta_prompt, "api_role": "system"},
103
+ {"role": "user", "content": "", "api_role": "user"},
104
+ {"role": "assistant", "content": self.plugin_prompt, "api_role": "assistant"},
105
+ {"role": "environment", "content": "", "api_role": "environment"}
106
+ ]
107
+
108
+ api_model = GPTAPI(
109
+ model_type=model_name,
110
+ api_base=api_base,
111
+ key=token, # 从环境变量中获取授权令牌
112
+ meta_template=meta_prompt,
113
+ max_new_tokens=512,
114
+ temperature=0.8,
115
+ top_p=0.9
116
+ )
117
+ return api_model
118
+
119
+ def render_user(self, prompt: str):
120
+ """渲染用户输入内容。"""
121
+ with st.chat_message('user'):
122
+ st.markdown(prompt)
123
+
124
+ def render_assistant(self, agent_return):
125
+ """渲染助手响应内容。"""
126
+ with st.chat_message('assistant'):
127
+ content = getattr(agent_return, "content", str(agent_return))
128
+ st.markdown(content if isinstance(content, str) else str(content))
129
+
130
+
131
+ def main():
132
+ """主函数,运行 Streamlit 应用。"""
133
+ if 'ui' not in st.session_state:
134
+ session_state = SessionState()
135
+ session_state.init_state()
136
+ st.session_state['ui'] = StreamlitUI(session_state)
137
+ else:
138
+ st.set_page_config(
139
+ layout='wide',
140
+ page_title='lagent-web',
141
+ page_icon='./docs/imgs/lagent_icon.png'
142
+ )
143
+ st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
144
+
145
+ # 设置侧边栏并获取模型和插件信息
146
+ model_name, api_base, plugin_action = st.session_state['ui'].setup_sidebar()
147
+ plugins = [dict(type=f"lagent.actions.{plugin.__class__.__name__}") for plugin in plugin_action]
148
+
149
+ if (
150
+ 'chatbot' not in st.session_state or
151
+ model_name != st.session_state['chatbot'].model_type or
152
+ 'last_plugin_action' not in st.session_state or
153
+ plugin_action != st.session_state['last_plugin_action'] or
154
+ api_base != st.session_state['api_base']
155
+ ):
156
+ # 更新 Chatbot
157
+ st.session_state['chatbot'] = st.session_state['ui'].initialize_chatbot(model_name, api_base, plugin_action)
158
+ st.session_state['last_plugin_action'] = plugin_action # 更新插件状态
159
+ st.session_state['api_base'] = api_base # 更新 API Base 地址
160
+
161
+ # 初始化 AgentForInternLM
162
+ st.session_state['agent'] = AgentForInternLM(
163
+ llm=st.session_state['chatbot'],
164
+ plugins=plugins,
165
+ output_format=dict(
166
+ type=PluginParser,
167
+ template=PLUGIN_CN,
168
+ prompt=get_plugin_prompt(plugin_action)
169
+ )
170
+ )
171
+ # 清空对话历史
172
+ st.session_state['session_history'] = []
173
+
174
+ if 'agent' not in st.session_state:
175
+ st.session_state['agent'] = None
176
+
177
+ agent = st.session_state['agent']
178
+ for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']):
179
+ st.session_state['ui'].render_user(prompt)
180
+ st.session_state['ui'].render_assistant(agent_return)
181
+
182
+ # 处理用户输入
183
+ if user_input := st.chat_input(''):
184
+ st.session_state['ui'].render_user(user_input)
185
+
186
+ # 调用模型时确保侧边栏的系统提示词和插件提示词生效
187
+ res = agent(user_input, session_id=0)
188
+ st.session_state['ui'].render_assistant(res)
189
+
190
+ # 更新会话状态
191
+ st.session_state['user'].append(user_input)
192
+ st.session_state['assistant'].append(copy.deepcopy(res))
193
+
194
+ st.session_state['last_status'] = None
195
+
196
+
197
+ if __name__ == '__main__':
198
+ main()
lagent/examples/.ipynb_checkpoints/multi_agents_api_web_demo-checkpoint.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import asyncio
3
+ import json
4
+ import re
5
+ import requests
6
+ import streamlit as st
7
+
8
+ from lagent.agents import Agent
9
+ from lagent.prompts.parsers import PluginParser
10
+ from lagent.agents.stream import PLUGIN_CN, get_plugin_prompt
11
+ from lagent.schema import AgentMessage
12
+ from lagent.actions import ArxivSearch
13
+ from lagent.hooks import Hook
14
+ from lagent.llms import GPTAPI
15
+
16
+ YOUR_TOKEN_HERE = os.getenv("token")
17
+ if not YOUR_TOKEN_HERE:
18
+ raise EnvironmentError("未找到环境变量 'token',请设置后再运行程序。")
19
+
20
+ # Hook类,用于对消息添加前缀
21
+ class PrefixedMessageHook(Hook):
22
+ def __init__(self, prefix, senders=None):
23
+ """
24
+ 初始化Hook
25
+ :param prefix: 消息前缀
26
+ :param senders: 指定发送者列表
27
+ """
28
+ self.prefix = prefix
29
+ self.senders = senders or []
30
+
31
+ def before_agent(self, agent, messages, session_id):
32
+ """
33
+ 在代理处理消息前修改消息内容
34
+ :param agent: 当前代理
35
+ :param messages: 消息列表
36
+ :param session_id: 会话ID
37
+ """
38
+ for message in messages:
39
+ if message.sender in self.senders:
40
+ message.content = self.prefix + message.content
41
+
42
+ class AsyncBlogger:
43
+ """博客生成类,整合写作者和批评者。"""
44
+
45
+ def __init__(self, model_type, api_base, writer_prompt, critic_prompt, critic_prefix='', max_turn=2):
46
+ """
47
+ 初始化博客生成器
48
+ :param model_type: 模型类型
49
+ :param api_base: API 基地址
50
+ :param writer_prompt: 写作者提示词
51
+ :param critic_prompt: 批评者提示词
52
+ :param critic_prefix: 批评消息前缀
53
+ :param max_turn: 最大轮次
54
+ """
55
+ self.model_type = model_type
56
+ self.api_base = api_base
57
+ self.llm = GPTAPI(
58
+ model_type=model_type,
59
+ api_base=api_base,
60
+ key=YOUR_TOKEN_HERE,
61
+ max_new_tokens=4096,
62
+ )
63
+ self.plugins = [dict(type='lagent.actions.ArxivSearch')]
64
+ self.writer = Agent(
65
+ self.llm,
66
+ writer_prompt,
67
+ name='写作者',
68
+ output_format=dict(
69
+ type=PluginParser,
70
+ template=PLUGIN_CN,
71
+ prompt=get_plugin_prompt(self.plugins)
72
+ )
73
+ )
74
+ self.critic = Agent(
75
+ self.llm,
76
+ critic_prompt,
77
+ name='批评者',
78
+ hooks=[PrefixedMessageHook(critic_prefix, ['写作者'])]
79
+ )
80
+ self.max_turn = max_turn
81
+
82
+ async def forward(self, message: AgentMessage, update_placeholder):
83
+ """
84
+ 执行多阶段博客生成流程
85
+ :param message: 初始消息
86
+ :param update_placeholder: Streamlit占位符
87
+ :return: 最终优化的博客内容
88
+ """
89
+ step1_placeholder = update_placeholder.container()
90
+ step2_placeholder = update_placeholder.container()
91
+ step3_placeholder = update_placeholder.container()
92
+
93
+ # 第一步:生成初始内容
94
+ step1_placeholder.markdown("**Step 1: 生成初始内容...**")
95
+ message = self.writer(message)
96
+ if message.content:
97
+ step1_placeholder.markdown(f"**生成的初始内容**:\n\n{message.content}")
98
+ else:
99
+ step1_placeholder.markdown("**生成的初始内容为空,请检查生成逻辑。**")
100
+
101
+ # 第二步:批评者提供反馈
102
+ step2_placeholder.markdown("**Step 2: 批评者正在提供反馈和文献推荐...**")
103
+ message = self.critic(message)
104
+ if message.content:
105
+ # 解析批评者反馈
106
+ suggestions = re.search(r"1\. 批评建议:\n(.*?)2\. 推荐的关键词:", message.content, re.S)
107
+ keywords = re.search(r"2\. 推荐的关键词:\n- (.*)", message.content)
108
+ feedback = suggestions.group(1).strip() if suggestions else "未提供批评建议"
109
+ keywords = keywords.group(1).strip() if keywords else "未提供关键词"
110
+
111
+ # Arxiv 文献查询
112
+ arxiv_search = ArxivSearch()
113
+ arxiv_results = arxiv_search.get_arxiv_article_information(keywords)
114
+
115
+ # 显示批评内容和文献推荐
116
+ message.content = f"**批评建议**:\n{feedback}\n\n**推荐的文献**:\n{arxiv_results}"
117
+ step2_placeholder.markdown(f"**批评和文献推荐**:\n\n{message.content}")
118
+ else:
119
+ step2_placeholder.markdown("**批评内容为空,请检查批评逻辑。**")
120
+
121
+ # 第三步:写作者根据反馈优化内容
122
+ step3_placeholder.markdown("**Step 3: 根据反馈改进内容...**")
123
+ improvement_prompt = AgentMessage(
124
+ sender="critic",
125
+ content=(
126
+ f"根据以下批评建议和推荐文献对内容进行改进:\n\n"
127
+ f"批评建议:\n{feedback}\n\n"
128
+ f"推荐文献:\n{arxiv_results}\n\n"
129
+ f"请优化��始内容,使其更加清晰、丰富,并符合专业水准。"
130
+ ),
131
+ )
132
+ message = self.writer(improvement_prompt)
133
+ if message.content:
134
+ step3_placeholder.markdown(f"**最终优化的博客内容**:\n\n{message.content}")
135
+ else:
136
+ step3_placeholder.markdown("**最终优化的博客内容为空,请检查生成逻辑。**")
137
+
138
+ return message
139
+
140
+ def setup_sidebar():
141
+ """设置侧边栏,选择模型。"""
142
+ model_name = st.sidebar.text_input('模型名称:', value='internlm2.5-latest')
143
+ api_base = st.sidebar.text_input(
144
+ 'API Base 地址:', value='https://internlm-chat.intern-ai.org.cn/puyu/api/v1/chat/completions'
145
+ )
146
+
147
+ return model_name, api_base
148
+
149
+ def main():
150
+ """
151
+ 主函数:构建Streamlit界面并处理用户交互
152
+ """
153
+ st.set_page_config(layout='wide', page_title='Lagent Web Demo', page_icon='🤖')
154
+ st.title("多代理博客优化助手")
155
+
156
+ model_type, api_base = setup_sidebar()
157
+ topic = st.text_input('输入一个话题:', 'Self-Supervised Learning')
158
+ generate_button = st.button('生成博客内容')
159
+
160
+ if (
161
+ 'blogger' not in st.session_state or
162
+ st.session_state['model_type'] != model_type or
163
+ st.session_state['api_base'] != api_base
164
+ ):
165
+ st.session_state['blogger'] = AsyncBlogger(
166
+ model_type=model_type,
167
+ api_base=api_base,
168
+ writer_prompt="你是一位优秀的AI内容写作者,请撰写一篇有吸引力且信息丰富的博客内容。",
169
+ critic_prompt="""
170
+ 作为一位严谨的批评者,请给出建设性的批评和改进建议,并基于相关主题使用已有的工具推荐一些参考文献,推荐的关键词应该是英语形式,简洁且切题。
171
+ 请按照以下格式提供反馈:
172
+ 1. 批评建议:
173
+ - (具体建议)
174
+ 2. 推荐的关键词:
175
+ - (关键词1, 关键词2, ...)
176
+ """,
177
+ critic_prefix="请批评以下内容,并提供改进建议:\n\n"
178
+ )
179
+ st.session_state['model_type'] = model_type
180
+ st.session_state['api_base'] = api_base
181
+
182
+ if generate_button:
183
+ update_placeholder = st.empty()
184
+
185
+ async def run_async_blogger():
186
+ message = AgentMessage(
187
+ sender='user',
188
+ content=f"请撰写一篇关于{topic}的博客文章,要求表达专业,生动有趣,并且易于理解。"
189
+ )
190
+ result = await st.session_state['blogger'].forward(message, update_placeholder)
191
+ return result
192
+
193
+ loop = asyncio.new_event_loop()
194
+ asyncio.set_event_loop(loop)
195
+ loop.run_until_complete(run_async_blogger())
196
+
197
+ if __name__ == '__main__':
198
+ main()
lagent/lagent.egg-info/PKG-INFO ADDED
@@ -0,0 +1,600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: lagent
3
+ Version: 0.5.0rc1
4
+ Summary: A lightweight framework for building LLM-based agents
5
+ Home-page: https://github.com/InternLM/lagent
6
+ License: Apache 2.0
7
+ Keywords: artificial general intelligence,agent,agi,llm
8
+ Description-Content-Type: text/markdown
9
+ License-File: LICENSE
10
+ Requires-Dist: aiohttp
11
+ Requires-Dist: arxiv
12
+ Requires-Dist: asyncache
13
+ Requires-Dist: asyncer
14
+ Requires-Dist: distro
15
+ Requires-Dist: duckduckgo_search==5.3.1b1
16
+ Requires-Dist: filelock
17
+ Requires-Dist: func_timeout
18
+ Requires-Dist: griffe<1.0
19
+ Requires-Dist: json5
20
+ Requires-Dist: jsonschema
21
+ Requires-Dist: jupyter==1.0.0
22
+ Requires-Dist: jupyter_client==8.6.2
23
+ Requires-Dist: jupyter_core==5.7.2
24
+ Requires-Dist: pydantic==2.6.4
25
+ Requires-Dist: requests
26
+ Requires-Dist: termcolor
27
+ Requires-Dist: tiktoken
28
+ Requires-Dist: timeout-decorator
29
+ Requires-Dist: typing-extensions
30
+ Provides-Extra: all
31
+ Requires-Dist: google-search-results; extra == "all"
32
+ Requires-Dist: lmdeploy>=0.2.5; extra == "all"
33
+ Requires-Dist: pillow; extra == "all"
34
+ Requires-Dist: python-pptx; extra == "all"
35
+ Requires-Dist: timeout_decorator; extra == "all"
36
+ Requires-Dist: torch; extra == "all"
37
+ Requires-Dist: transformers<=4.40,>=4.34; extra == "all"
38
+ Requires-Dist: vllm>=0.3.3; extra == "all"
39
+ Requires-Dist: aiohttp; extra == "all"
40
+ Requires-Dist: arxiv; extra == "all"
41
+ Requires-Dist: asyncache; extra == "all"
42
+ Requires-Dist: asyncer; extra == "all"
43
+ Requires-Dist: distro; extra == "all"
44
+ Requires-Dist: duckduckgo_search==5.3.1b1; extra == "all"
45
+ Requires-Dist: filelock; extra == "all"
46
+ Requires-Dist: func_timeout; extra == "all"
47
+ Requires-Dist: griffe<1.0; extra == "all"
48
+ Requires-Dist: json5; extra == "all"
49
+ Requires-Dist: jsonschema; extra == "all"
50
+ Requires-Dist: jupyter==1.0.0; extra == "all"
51
+ Requires-Dist: jupyter_client==8.6.2; extra == "all"
52
+ Requires-Dist: jupyter_core==5.7.2; extra == "all"
53
+ Requires-Dist: pydantic==2.6.4; extra == "all"
54
+ Requires-Dist: requests; extra == "all"
55
+ Requires-Dist: termcolor; extra == "all"
56
+ Requires-Dist: tiktoken; extra == "all"
57
+ Requires-Dist: timeout-decorator; extra == "all"
58
+ Requires-Dist: typing-extensions; extra == "all"
59
+ Provides-Extra: optional
60
+ Requires-Dist: google-search-results; extra == "optional"
61
+ Requires-Dist: lmdeploy>=0.2.5; extra == "optional"
62
+ Requires-Dist: pillow; extra == "optional"
63
+ Requires-Dist: python-pptx; extra == "optional"
64
+ Requires-Dist: timeout_decorator; extra == "optional"
65
+ Requires-Dist: torch; extra == "optional"
66
+ Requires-Dist: transformers<=4.40,>=4.34; extra == "optional"
67
+ Requires-Dist: vllm>=0.3.3; extra == "optional"
68
+
69
+ <div id="top"></div>
70
+ <div align="center">
71
+ <img src="docs/imgs/lagent_logo.png" width="450"/>
72
+
73
+ [![docs](https://img.shields.io/badge/docs-latest-blue)](https://lagent.readthedocs.io/en/latest/)
74
+ [![PyPI](https://img.shields.io/pypi/v/lagent)](https://pypi.org/project/lagent)
75
+ [![license](https://img.shields.io/github/license/InternLM/lagent.svg)](https://github.com/InternLM/lagent/tree/main/LICENSE)
76
+ [![issue resolution](https://img.shields.io/github/issues-closed-raw/InternLM/lagent)](https://github.com/InternLM/lagent/issues)
77
+ [![open issues](https://img.shields.io/github/issues-raw/InternLM/lagent)](https://github.com/InternLM/lagent/issues)
78
+ ![Visitors](https://api.visitorbadge.io/api/visitors?path=InternLM%2Flagent%20&countColor=%23263759&style=flat)
79
+ ![GitHub forks](https://img.shields.io/github/forks/InternLM/lagent)
80
+ ![GitHub Repo stars](https://img.shields.io/github/stars/InternLM/lagent)
81
+ ![GitHub contributors](https://img.shields.io/github/contributors/InternLM/lagent)
82
+
83
+ </div>
84
+
85
+ <p align="center">
86
+ 👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">𝕏 (Twitter)</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
87
+ </p>
88
+
89
+ ## Installation
90
+
91
+ Install from source:
92
+
93
+ ```bash
94
+ git clone https://github.com/InternLM/lagent.git
95
+ cd lagent
96
+ pip install -e .
97
+ ```
98
+
99
+ ## Usage
100
+
101
+ Lagent is inspired by the design philosophy of PyTorch. We expect that the analogy of neural network layers will make the workflow clearer and more intuitive, so users only need to focus on creating layers and defining message passing between them in a Pythonic way. This is a simple tutorial to get you quickly started with building multi-agent applications.
102
+
103
+ ### Models as Agents
104
+
105
+ Agents use `AgentMessage` for communication.
106
+
107
+ ```python
108
+ from typing import Dict, List
109
+ from lagent.agents import Agent
110
+ from lagent.schema import AgentMessage
111
+ from lagent.llms import VllmModel, INTERNLM2_META
112
+
113
+ llm = VllmModel(
114
+ path='Qwen/Qwen2-7B-Instruct',
115
+ meta_template=INTERNLM2_META,
116
+ tp=1,
117
+ top_k=1,
118
+ temperature=1.0,
119
+ stop_words=['<|im_end|>'],
120
+ max_new_tokens=1024,
121
+ )
122
+ system_prompt = '你的回答只能从“典”、“孝”、“急”三个字中选一个。'
123
+ agent = Agent(llm, system_prompt)
124
+
125
+ user_msg = AgentMessage(sender='user', content='今天天气情况')
126
+ bot_msg = agent(user_msg)
127
+ print(bot_msg)
128
+ ```
129
+
130
+ ```
131
+ content='急' sender='Agent' formatted=None extra_info=None type=None receiver=None stream_state=<AgentStatusCode.END: 0>
132
+ ```
133
+
134
+ ### Memory as State
135
+
136
+ Both input and output messages will be added to the memory of `Agent` in each forward pass. This is performed in `__call__` rather than `forward`. See the following pseudo code
137
+
138
+ ```python
139
+ def __call__(self, *message):
140
+ message = pre_hooks(message)
141
+ add_memory(message)
142
+ message = self.forward(*message)
143
+ add_memory(message)
144
+ message = post_hooks(message)
145
+ return message
146
+ ```
147
+
148
+ Inspect the memory in two ways
149
+
150
+ ```python
151
+ memory: List[AgentMessage] = agent.memory.get_memory()
152
+ print(memory)
153
+ print('-' * 120)
154
+ dumped_memory: Dict[str, List[dict]] = agent.state_dict()
155
+ print(dumped_memory['memory'])
156
+ ```
157
+
158
+ ```
159
+ [AgentMessage(content='今天天气情况', sender='user', formatted=None, extra_info=None, type=None, receiver=None, stream_state=<AgentStatusCode.END: 0>), AgentMessage(content='急', sender='Agent', formatted=None, extra_info=None, type=None, receiver=None, stream_state=<AgentStatusCode.END: 0>)]
160
+ ------------------------------------------------------------------------------------------------------------------------
161
+ [{'content': '今天天气情况', 'sender': 'user', 'formatted': None, 'extra_info': None, 'type': None, 'receiver': None, 'stream_state': <AgentStatusCode.END: 0>}, {'content': '急', 'sender': 'Agent', 'formatted': None, 'extra_info': None, 'type': None, 'receiver': None, 'stream_state': <AgentStatusCode.END: 0>}]
162
+ ```
163
+
164
+ Clear the memory of this session(`session_id=0` by default):
165
+
166
+ ```python
167
+ agent.memory.reset()
168
+ ```
169
+
170
+ ### Custom Message Aggregation
171
+
172
+ `DefaultAggregator` is called under the hood to assemble and convert `AgentMessage` to OpenAI message format.
173
+
174
+ ```python
175
+ def forward(self, *message: AgentMessage, session_id=0, **kwargs) -> Union[AgentMessage, str]:
176
+ formatted_messages = self.aggregator.aggregate(
177
+ self.memory.get(session_id),
178
+ self.name,
179
+ self.output_format,
180
+ self.template,
181
+ )
182
+ llm_response = self.llm.chat(formatted_messages, **kwargs)
183
+ ...
184
+ ```
185
+
186
+ Implement a simple aggregator that can receive few-shots
187
+
188
+ ```python
189
+ from typing import List, Union
190
+ from lagent.memory import Memory
191
+ from lagent.prompts import StrParser
192
+ from lagent.agents.aggregator import DefaultAggregator
193
+
194
+ class FewshotAggregator(DefaultAggregator):
195
+ def __init__(self, few_shot: List[dict] = None):
196
+ self.few_shot = few_shot or []
197
+
198
+ def aggregate(self,
199
+ messages: Memory,
200
+ name: str,
201
+ parser: StrParser = None,
202
+ system_instruction: Union[str, dict, List[dict]] = None) -> List[dict]:
203
+ _message = []
204
+ if system_instruction:
205
+ _message.extend(
206
+ self.aggregate_system_intruction(system_instruction))
207
+ _message.extend(self.few_shot)
208
+ messages = messages.get_memory()
209
+ for message in messages:
210
+ if message.sender == name:
211
+ _message.append(
212
+ dict(role='assistant', content=str(message.content)))
213
+ else:
214
+ user_message = message.content
215
+ if len(_message) > 0 and _message[-1]['role'] == 'user':
216
+ _message[-1]['content'] += user_message
217
+ else:
218
+ _message.append(dict(role='user', content=user_message))
219
+ return _message
220
+
221
+ agent = Agent(
222
+ llm,
223
+ aggregator=FewshotAggregator(
224
+ [
225
+ {"role": "user", "content": "今天天气"},
226
+ {"role": "assistant", "content": "【晴】"},
227
+ ]
228
+ )
229
+ )
230
+ user_msg = AgentMessage(sender='user', content='昨天天气')
231
+ bot_msg = agent(user_msg)
232
+ print(bot_msg)
233
+ ```
234
+
235
+ ```
236
+ content='【多云转晴,夜间有轻微降温】' sender='Agent' formatted=None extra_info=None type=None receiver=None stream_state=<AgentStatusCode.END: 0>
237
+ ```
238
+
239
+ ### Flexible Response Formatting
240
+
241
+ In `AgentMessage`, `formatted` is reserved to store information parsed by `output_format` from the model output.
242
+
243
+ ```python
244
+ def forward(self, *message: AgentMessage, session_id=0, **kwargs) -> Union[AgentMessage, str]:
245
+ ...
246
+ llm_response = self.llm.chat(formatted_messages, **kwargs)
247
+ if self.output_format:
248
+ formatted_messages = self.output_format.parse_response(llm_response)
249
+ return AgentMessage(
250
+ sender=self.name,
251
+ content=llm_response,
252
+ formatted=formatted_messages,
253
+ )
254
+ ...
255
+ ```
256
+
257
+ Use a tool parser as follows
258
+
259
+ ````python
260
+ from lagent.prompts.parsers import ToolParser
261
+
262
+ system_prompt = "逐步分析并编写Python代码解决以下问题。"
263
+ parser = ToolParser(tool_type='code interpreter', begin='```python\n', end='\n```\n')
264
+ llm.gen_params['stop_words'].append('\n```\n')
265
+ agent = Agent(llm, system_prompt, output_format=parser)
266
+
267
+ user_msg = AgentMessage(
268
+ sender='user',
269
+ content='Marie is thinking of a multiple of 63, while Jay is thinking of a '
270
+ 'factor of 63. They happen to be thinking of the same number. There are '
271
+ 'two possibilities for the number that each of them is thinking of, one '
272
+ 'positive and one negative. Find the product of these two numbers.')
273
+ bot_msg = agent(user_msg)
274
+ print(bot_msg.model_dump_json(indent=4))
275
+ ````
276
+
277
+ ````
278
+ {
279
+ "content": "首先,我们需要找出63的所有正因数和负因数。63的正因数可以通过分解63的质因数来找出,即\\(63 = 3^2 \\times 7\\)。因此,63的正因数包括1, 3, 7, 9, 21, 和 63。对于负因数,我们只需将上述正因数乘以-1。\n\n接下来,我们需要找出与63的正因数相乘的结果为63的数,以及与63的负因数相乘的结果为63的数。这可以通过将63除以每个正因数和负因数来实现。\n\n最后,我们将找到的两个数相乘得到最终答案。\n\n下面是Python代码实现:\n\n```python\ndef find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)",
280
+ "sender": "Agent",
281
+ "formatted": {
282
+ "tool_type": "code interpreter",
283
+ "thought": "首先,我们需要找出63的所有正因数和负因数。63的正因数可以通过分解63的质因数来找出,即\\(63 = 3^2 \\times 7\\)。因此,63的正因数包括1, 3, 7, 9, 21, 和 63。对于负因数,我们只需将上述正因数乘以-1。\n\n接下来,我们需要找出与63的正因数相乘的结果为63的数,以及与63的负因数相乘的结果为63的数。这可以通过将63除以每个正因数和负因数来实现。\n\n最后,我们将找到的两个数相乘得到最终答案。\n\n下面是Python代码实现:\n\n",
284
+ "action": "def find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)",
285
+ "status": 1
286
+ },
287
+ "extra_info": null,
288
+ "type": null,
289
+ "receiver": null,
290
+ "stream_state": 0
291
+ }
292
+ ````
293
+
294
+ ### Consistency of Tool Calling
295
+
296
+ `ActionExecutor` uses the same communication data structure as `Agent`, but requires the content of input `AgentMessage` to be a dict containing:
297
+
298
+ - `name`: tool name, e.g. `'IPythonInterpreter'`, `'WebBrowser.search'`.
299
+ - `parameters`: keyword arguments of the tool API, e.g. `{'command': 'import math;math.sqrt(2)'}`, `{'query': ['recent progress in AI']}`.
300
+
301
+ You can register custom hooks for message conversion.
302
+
303
+ ```python
304
+ from lagent.hooks import Hook
305
+ from lagent.schema import ActionReturn, ActionStatusCode, AgentMessage
306
+ from lagent.actions import ActionExecutor, IPythonInteractive
307
+
308
+ class CodeProcessor(Hook):
309
+ def before_action(self, executor, message, session_id):
310
+ message = message.copy(deep=True)
311
+ message.content = dict(
312
+ name='IPythonInteractive', parameters={'command': message.formatted['action']}
313
+ )
314
+ return message
315
+
316
+ def after_action(self, executor, message, session_id):
317
+ action_return = message.content
318
+ if isinstance(action_return, ActionReturn):
319
+ if action_return.state == ActionStatusCode.SUCCESS:
320
+ response = action_return.format_result()
321
+ else:
322
+ response = action_return.errmsg
323
+ else:
324
+ response = action_return
325
+ message.content = response
326
+ return message
327
+
328
+ executor = ActionExecutor(actions=[IPythonInteractive()], hooks=[CodeProcessor()])
329
+ bot_msg = AgentMessage(
330
+ sender='Agent',
331
+ content='首先,我们需要...',
332
+ formatted={
333
+ 'tool_type': 'code interpreter',
334
+ 'thought': '首先,我们需要...',
335
+ 'action': 'def find_numbers():\n # 正因数\n positive_factors = [1, 3, 7, 9, 21, 63]\n # 负因数\n negative_factors = [-1, -3, -7, -9, -21, -63]\n \n # 找到与正因数相乘的结果为63的数\n positive_numbers = [63 / factor for factor in positive_factors]\n # 找到与负因数相乘的结果为63的数\n negative_numbers = [-63 / factor for factor in negative_factors]\n \n # 计算两个数的乘积\n product = positive_numbers[0] * negative_numbers[0]\n \n return product\n\nresult = find_numbers()\nprint(result)',
336
+ 'status': 1
337
+ })
338
+ executor_msg = executor(bot_msg)
339
+ print(executor_msg)
340
+ ```
341
+
342
+ ```
343
+ content='3969.0' sender='ActionExecutor' formatted=None extra_info=None type=None receiver=None stream_state=<AgentStatusCode.END: 0>
344
+ ```
345
+
346
+ **For convenience, Lagent provides `InternLMActionProcessor` which is adapted to messages formatted by `ToolParser` as mentioned above.**
347
+
348
+ ### Dual Interfaces
349
+
350
+ Lagent adopts dual interface design, where almost every component(LLMs, actions, action executors...) has the corresponding asynchronous variant by prefixing its identifier with 'Async'. It is recommended to use synchronous agents for debugging and asynchronous ones for large-scale inference to make the most of idle CPU and GPU resources.
351
+
352
+ However, make sure the internal consistency of agents, i.e. asynchronous agents should be equipped with asynchronous LLMs and asynchronous action executors that drive asynchronous tools.
353
+
354
+ ```python
355
+ from lagent.llms import VllmModel, AsyncVllmModel, LMDeployPipeline, AsyncLMDeployPipeline
356
+ from lagent.actions import ActionExecutor, AsyncActionExecutor, WebBrowser, AsyncWebBrowser
357
+ from lagent.agents import Agent, AsyncAgent, AgentForInternLM, AsyncAgentForInternLM
358
+ ```
359
+
360
+ ______________________________________________________________________
361
+
362
+ ## Practice
363
+
364
+ - **Try to implement `forward` instead of `__call__` of subclasses unless necessary.**
365
+ - **Always include the `session_id` argument explicitly, which is designed for isolation of memory, LLM requests and tool invocation(e.g. maintain multiple independent IPython environments) in concurrency.**
366
+
367
+ ### Single Agent
368
+
369
+ Math agents that solve problems by programming
370
+
371
+ ````python
372
+ from lagent.agents.aggregator import InternLMToolAggregator
373
+
374
+ class Coder(Agent):
375
+ def __init__(self, model_path, system_prompt, max_turn=3):
376
+ super().__init__()
377
+ llm = VllmModel(
378
+ path=model_path,
379
+ meta_template=INTERNLM2_META,
380
+ tp=1,
381
+ top_k=1,
382
+ temperature=1.0,
383
+ stop_words=['\n```\n', '<|im_end|>'],
384
+ max_new_tokens=1024,
385
+ )
386
+ self.agent = Agent(
387
+ llm,
388
+ system_prompt,
389
+ output_format=ToolParser(
390
+ tool_type='code interpreter', begin='```python\n', end='\n```\n'
391
+ ),
392
+ # `InternLMToolAggregator` is adapted to `ToolParser` for aggregating
393
+ # messages with tool invocations and execution results
394
+ aggregator=InternLMToolAggregator(),
395
+ )
396
+ self.executor = ActionExecutor([IPythonInteractive()], hooks=[CodeProcessor()])
397
+ self.max_turn = max_turn
398
+
399
+ def forward(self, message: AgentMessage, session_id=0) -> AgentMessage:
400
+ for _ in range(self.max_turn):
401
+ message = self.agent(message, session_id=session_id)
402
+ if message.formatted['tool_type'] is None:
403
+ return message
404
+ message = self.executor(message, session_id=session_id)
405
+ return message
406
+
407
+ coder = Coder('Qwen/Qwen2-7B-Instruct', 'Solve the problem step by step with assistance of Python code')
408
+ query = AgentMessage(
409
+ sender='user',
410
+ content='Find the projection of $\\mathbf{a}$ onto $\\mathbf{b} = '
411
+ '\\begin{pmatrix} 1 \\\\ -3 \\end{pmatrix}$ if $\\mathbf{a} \\cdot \\mathbf{b} = 2.$'
412
+ )
413
+ answer = coder(query)
414
+ print(answer.content)
415
+ print('-' * 120)
416
+ for msg in coder.state_dict()['agent.memory']:
417
+ print('*' * 80)
418
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
419
+ ````
420
+
421
+ ### Multiple Agents
422
+
423
+ Asynchronous blogging agents that improve writing quality by self-refinement ([original AutoGen example](https://microsoft.github.io/autogen/0.2/docs/topics/prompting-and-reasoning/reflection/))
424
+
425
+ ```python
426
+ import asyncio
427
+ import os
428
+ from lagent.llms import AsyncGPTAPI
429
+ from lagent.agents import AsyncAgent
430
+ os.environ['OPENAI_API_KEY'] = 'YOUR_API_KEY'
431
+
432
+ class PrefixedMessageHook(Hook):
433
+ def __init__(self, prefix: str, senders: list = None):
434
+ self.prefix = prefix
435
+ self.senders = senders or []
436
+
437
+ def before_agent(self, agent, messages, session_id):
438
+ for message in messages:
439
+ if message.sender in self.senders:
440
+ message.content = self.prefix + message.content
441
+
442
+ class AsyncBlogger(AsyncAgent):
443
+ def __init__(self, model_path, writer_prompt, critic_prompt, critic_prefix='', max_turn=3):
444
+ super().__init__()
445
+ llm = AsyncGPTAPI(model_type=model_path, retry=5, max_new_tokens=2048)
446
+ self.writer = AsyncAgent(llm, writer_prompt, name='writer')
447
+ self.critic = AsyncAgent(
448
+ llm, critic_prompt, name='critic', hooks=[PrefixedMessageHook(critic_prefix, ['writer'])]
449
+ )
450
+ self.max_turn = max_turn
451
+
452
+ async def forward(self, message: AgentMessage, session_id=0) -> AgentMessage:
453
+ for _ in range(self.max_turn):
454
+ message = await self.writer(message, session_id=session_id)
455
+ message = await self.critic(message, session_id=session_id)
456
+ return await self.writer(message, session_id=session_id)
457
+
458
+ blogger = AsyncBlogger(
459
+ 'gpt-4o-2024-05-13',
460
+ writer_prompt="You are an writing assistant tasked to write engaging blogpost. You try to generate the best blogpost possible for the user's request. "
461
+ "If the user provides critique, then respond with a revised version of your previous attempts",
462
+ critic_prompt="Generate critique and recommendations on the writing. Provide detailed recommendations, including requests for length, depth, style, etc..",
463
+ critic_prefix='Reflect and provide critique on the following writing. \n\n',
464
+ )
465
+ user_prompt = (
466
+ "Write an engaging blogpost on the recent updates in {topic}. "
467
+ "The blogpost should be engaging and understandable for general audience. "
468
+ "Should have more than 3 paragraphes but no longer than 1000 words.")
469
+ bot_msgs = asyncio.get_event_loop().run_until_complete(
470
+ asyncio.gather(
471
+ *[
472
+ blogger(AgentMessage(sender='user', content=user_prompt.format(topic=topic)), session_id=i)
473
+ for i, topic in enumerate(['AI', 'Biotechnology', 'New Energy', 'Video Games', 'Pop Music'])
474
+ ]
475
+ )
476
+ )
477
+ print(bot_msgs[0].content)
478
+ print('-' * 120)
479
+ for msg in blogger.state_dict(session_id=0)['writer.memory']:
480
+ print('*' * 80)
481
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
482
+ print('-' * 120)
483
+ for msg in blogger.state_dict(session_id=0)['critic.memory']:
484
+ print('*' * 80)
485
+ print(f'{msg["sender"]}:\n\n{msg["content"]}')
486
+ ```
487
+
488
+ A multi-agent workflow that performs information retrieval, data collection and chart plotting ([original LangGraph example](https://vijaykumarkartha.medium.com/multiple-ai-agents-creating-multi-agent-workflows-using-langgraph-and-langchain-0587406ec4e6))
489
+
490
+ <div align="center">
491
+ <img src="https://miro.medium.com/v2/resize:fit:1400/format:webp/1*ffzadZCKXJT7n4JaRVFvcQ.jpeg" width="850" />
492
+ </div>
493
+
494
+ ````python
495
+ import json
496
+ from lagent.actions import IPythonInterpreter, WebBrowser, ActionExecutor
497
+ from lagent.agents.stream import get_plugin_prompt
498
+ from lagent.llms import GPTAPI
499
+ from lagent.hooks import InternLMActionProcessor
500
+
501
+ TOOL_TEMPLATE = (
502
+ "You are a helpful AI assistant, collaborating with other assistants. Use the provided tools to progress"
503
+ " towards answering the question. If you are unable to fully answer, that's OK, another assistant with"
504
+ " different tools will help where you left off. Execute what you can to make progress. If you or any of"
505
+ " the other assistants have the final answer or deliverable, prefix your response with {finish_pattern}"
506
+ " so the team knows to stop. You have access to the following tools:\n{tool_description}\nPlease provide"
507
+ " your thought process when you need to use a tool, followed by the call statement in this format:"
508
+ "\n{invocation_format}\\\\n**{system_prompt}**"
509
+ )
510
+
511
+ class DataVisualizer(Agent):
512
+ def __init__(self, model_path, research_prompt, chart_prompt, finish_pattern="Final Answer", max_turn=10):
513
+ super().__init__()
514
+ llm = GPTAPI(model_path, key='YOUR_OPENAI_API_KEY', retry=5, max_new_tokens=1024, stop_words=["```\n"])
515
+ interpreter, browser = IPythonInterpreter(), WebBrowser("BingSearch", api_key="YOUR_BING_API_KEY")
516
+ self.researcher = Agent(
517
+ llm,
518
+ TOOL_TEMPLATE.format(
519
+ finish_pattern=finish_pattern,
520
+ tool_description=get_plugin_prompt(browser),
521
+ invocation_format='```json\n{"name": {{tool name}}, "parameters": {{keyword arguments}}}\n```\n',
522
+ system_prompt=research_prompt,
523
+ ),
524
+ output_format=ToolParser(
525
+ "browser",
526
+ begin="```json\n",
527
+ end="\n```\n",
528
+ validate=lambda x: json.loads(x.rstrip('`')),
529
+ ),
530
+ aggregator=InternLMToolAggregator(),
531
+ name="researcher",
532
+ )
533
+ self.charter = Agent(
534
+ llm,
535
+ TOOL_TEMPLATE.format(
536
+ finish_pattern=finish_pattern,
537
+ tool_description=interpreter.name,
538
+ invocation_format='```python\n{{code}}\n```\n',
539
+ system_prompt=chart_prompt,
540
+ ),
541
+ output_format=ToolParser(
542
+ "interpreter",
543
+ begin="```python\n",
544
+ end="\n```\n",
545
+ validate=lambda x: x.rstrip('`'),
546
+ ),
547
+ aggregator=InternLMToolAggregator(),
548
+ name="charter",
549
+ )
550
+ self.executor = ActionExecutor([interpreter, browser], hooks=[InternLMActionProcessor()])
551
+ self.finish_pattern = finish_pattern
552
+ self.max_turn = max_turn
553
+
554
+ def forward(self, message, session_id=0):
555
+ for _ in range(self.max_turn):
556
+ message = self.researcher(message, session_id=session_id, stop_words=["```\n", "```python"]) # override llm stop words
557
+ while message.formatted["tool_type"]:
558
+ message = self.executor(message, session_id=session_id)
559
+ message = self.researcher(message, session_id=session_id, stop_words=["```\n", "```python"])
560
+ if self.finish_pattern in message.content:
561
+ return message
562
+ message = self.charter(message)
563
+ while message.formatted["tool_type"]:
564
+ message = self.executor(message, session_id=session_id)
565
+ message = self.charter(message, session_id=session_id)
566
+ if self.finish_pattern in message.content:
567
+ return message
568
+ return message
569
+
570
+ visualizer = DataVisualizer(
571
+ "gpt-4o-2024-05-13",
572
+ research_prompt="You should provide accurate data for the chart generator to use.",
573
+ chart_prompt="Any charts you display will be visible by the user.",
574
+ )
575
+ user_msg = AgentMessage(
576
+ sender='user',
577
+ content="Fetch the China's GDP over the past 5 years, then draw a line graph of it. Once you code it up, finish.")
578
+ bot_msg = visualizer(user_msg)
579
+ print(bot_msg.content)
580
+ json.dump(visualizer.state_dict(), open('visualizer.json', 'w'), ensure_ascii=False, indent=4)
581
+ ````
582
+
583
+ ## Citation
584
+
585
+ If you find this project useful in your research, please consider cite:
586
+
587
+ ```latex
588
+ @misc{lagent2023,
589
+ title={{Lagent: InternLM} a lightweight open-source framework that allows users to efficiently build large language model(LLM)-based agents},
590
+ author={Lagent Developer Team},
591
+ howpublished = {\url{https://github.com/InternLM/lagent}},
592
+ year={2023}
593
+ }
594
+ ```
595
+
596
+ ## License
597
+
598
+ This project is released under the [Apache 2.0 license](LICENSE).
599
+
600
+ <p align="right"><a href="#top">🔼 Back to top</a></p>
lagent/lagent.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LICENSE
2
+ MANIFEST.in
3
+ README.md
4
+ setup.cfg
5
+ setup.py
6
+ lagent/__init__.py
7
+ lagent/schema.py
8
+ lagent/version.py
9
+ lagent.egg-info/PKG-INFO
10
+ lagent.egg-info/SOURCES.txt
11
+ lagent.egg-info/dependency_links.txt
12
+ lagent.egg-info/requires.txt
13
+ lagent.egg-info/top_level.txt
14
+ lagent/actions/__init__.py
15
+ lagent/actions/action_executor.py
16
+ lagent/actions/arxiv_search.py
17
+ lagent/actions/base_action.py
18
+ lagent/actions/bing_map.py
19
+ lagent/actions/builtin_actions.py
20
+ lagent/actions/google_scholar_search.py
21
+ lagent/actions/google_search.py
22
+ lagent/actions/ipython_interactive.py
23
+ lagent/actions/ipython_interpreter.py
24
+ lagent/actions/ipython_manager.py
25
+ lagent/actions/parser.py
26
+ lagent/actions/ppt.py
27
+ lagent/actions/python_interpreter.py
28
+ lagent/actions/web_browser.py
29
+ lagent/agents/__init__.py
30
+ lagent/agents/agent.py
31
+ lagent/agents/react.py
32
+ lagent/agents/stream.py
33
+ lagent/agents/aggregator/__init__.py
34
+ lagent/agents/aggregator/default_aggregator.py
35
+ lagent/agents/aggregator/tool_aggregator.py
36
+ lagent/distributed/__init__.py
37
+ lagent/distributed/http_serve/__init__.py
38
+ lagent/distributed/http_serve/api_server.py
39
+ lagent/distributed/http_serve/app.py
40
+ lagent/distributed/ray_serve/__init__.py
41
+ lagent/distributed/ray_serve/ray_warpper.py
42
+ lagent/hooks/__init__.py
43
+ lagent/hooks/action_preprocessor.py
44
+ lagent/hooks/hook.py
45
+ lagent/hooks/logger.py
46
+ lagent/llms/__init__.py
47
+ lagent/llms/base_api.py
48
+ lagent/llms/base_llm.py
49
+ lagent/llms/huggingface.py
50
+ lagent/llms/lmdeploy_wrapper.py
51
+ lagent/llms/meta_template.py
52
+ lagent/llms/openai.py
53
+ lagent/llms/sensenova.py
54
+ lagent/llms/vllm_wrapper.py
55
+ lagent/memory/__init__.py
56
+ lagent/memory/base_memory.py
57
+ lagent/memory/manager.py
58
+ lagent/prompts/__init__.py
59
+ lagent/prompts/prompt_template.py
60
+ lagent/prompts/parsers/__init__.py
61
+ lagent/prompts/parsers/custom_parser.py
62
+ lagent/prompts/parsers/json_parser.py
63
+ lagent/prompts/parsers/str_parser.py
64
+ lagent/prompts/parsers/tool_parser.py
65
+ lagent/utils/__init__.py
66
+ lagent/utils/gen_key.py
67
+ lagent/utils/package.py
68
+ lagent/utils/util.py
69
+ requirements/docs.txt
70
+ requirements/optional.txt
71
+ requirements/runtime.txt
lagent/lagent.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
lagent/lagent.egg-info/requires.txt ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ aiohttp
2
+ arxiv
3
+ asyncache
4
+ asyncer
5
+ distro
6
+ duckduckgo_search==5.3.1b1
7
+ filelock
8
+ func_timeout
9
+ griffe<1.0
10
+ json5
11
+ jsonschema
12
+ jupyter==1.0.0
13
+ jupyter_client==8.6.2
14
+ jupyter_core==5.7.2
15
+ pydantic==2.6.4
16
+ requests
17
+ termcolor
18
+ tiktoken
19
+ timeout-decorator
20
+ typing-extensions
21
+
22
+ [all]
23
+ google-search-results
24
+ lmdeploy>=0.2.5
25
+ pillow
26
+ python-pptx
27
+ timeout_decorator
28
+ torch
29
+ transformers<=4.40,>=4.34
30
+ vllm>=0.3.3
31
+ aiohttp
32
+ arxiv
33
+ asyncache
34
+ asyncer
35
+ distro
36
+ duckduckgo_search==5.3.1b1
37
+ filelock
38
+ func_timeout
39
+ griffe<1.0
40
+ json5
41
+ jsonschema
42
+ jupyter==1.0.0
43
+ jupyter_client==8.6.2
44
+ jupyter_core==5.7.2
45
+ pydantic==2.6.4
46
+ requests
47
+ termcolor
48
+ tiktoken
49
+ typing-extensions
50
+
51
+ [optional]
52
+ google-search-results
53
+ lmdeploy>=0.2.5
54
+ pillow
55
+ python-pptx
56
+ timeout_decorator
57
+ torch
58
+ transformers<=4.40,>=4.34
59
+ vllm>=0.3.3
lagent/lagent.egg-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ lagent
lagent/lagent/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (231 Bytes). View file
 
lagent/lagent/__pycache__/schema.cpython-310.pyc ADDED
Binary file (3.46 kB). View file
 
lagent/lagent/__pycache__/version.cpython-310.pyc ADDED
Binary file (744 Bytes). View file
 
lagent/lagent/actions/.ipynb_checkpoints/__init__-checkpoint.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .action_executor import ActionExecutor, AsyncActionExecutor
2
+ from .arxiv_search import ArxivSearch, AsyncArxivSearch
3
+ from .base_action import BaseAction, tool_api
4
+ from .bing_map import AsyncBINGMap, BINGMap
5
+ from .builtin_actions import FinishAction, InvalidAction, NoAction
6
+ from .google_scholar_search import AsyncGoogleScholar, GoogleScholar
7
+ from .google_search import AsyncGoogleSearch, GoogleSearch
8
+ from .ipython_interactive import AsyncIPythonInteractive, IPythonInteractive
9
+ from .ipython_interpreter import AsyncIPythonInterpreter, IPythonInterpreter
10
+ from .ipython_manager import IPythonInteractiveManager
11
+ from .parser import BaseParser, JsonParser, TupleParser
12
+ from .ppt import PPT, AsyncPPT
13
+ from .python_interpreter import AsyncPythonInterpreter, PythonInterpreter
14
+ from .web_browser import AsyncWebBrowser, WebBrowser
15
+ from .weather_query import WeatherQuery
16
+
17
+ __all__ = [
18
+ 'BaseAction', 'ActionExecutor', 'AsyncActionExecutor', 'InvalidAction',
19
+ 'FinishAction', 'NoAction', 'BINGMap', 'AsyncBINGMap', 'ArxivSearch',
20
+ 'AsyncArxivSearch', 'GoogleSearch', 'AsyncGoogleSearch', 'GoogleScholar',
21
+ 'AsyncGoogleScholar', 'IPythonInterpreter', 'AsyncIPythonInterpreter',
22
+ 'IPythonInteractive', 'AsyncIPythonInteractive',
23
+ 'IPythonInteractiveManager', 'PythonInterpreter', 'AsyncPythonInterpreter',
24
+ 'PPT', 'AsyncPPT', 'WebBrowser', 'AsyncWebBrowser', 'BaseParser',
25
+ 'JsonParser', 'TupleParser', 'tool_api', 'WeatherQuery'
26
+ ]
lagent/lagent/actions/.ipynb_checkpoints/weather_query-checkpoint.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ from lagent.actions.base_action import BaseAction, tool_api
4
+ from lagent.schema import ActionReturn, ActionStatusCode
5
+
6
+ class WeatherQuery(BaseAction):
7
+ def __init__(self):
8
+ super().__init__()
9
+ self.api_key = os.getenv("weather_token")
10
+ print(self.api_key)
11
+ if not self.api_key:
12
+ raise EnvironmentError("未找到环境变量 'token'。请设置你的和风天气 API Key 到 'weather_token' 环境变量中,比如export weather_token='xxx' ")
13
+
14
+ @tool_api
15
+ def run(self, location: str) -> dict:
16
+ """
17
+ 查询实时天气信息。
18
+
19
+ Args:
20
+ location (str): 要查询的地点名称、LocationID 或经纬度坐标(如 "101010100" 或 "116.41,39.92")。
21
+
22
+ Returns:
23
+ dict: 包含天气信息的字典
24
+ * location: 地点名称
25
+ * weather: 天气状况
26
+ * temperature: 当前温度
27
+ * wind_direction: 风向
28
+ * wind_speed: 风速(公里/小时)
29
+ * humidity: 相对湿度(%)
30
+ * report_time: 数据报告时间
31
+ """
32
+ try:
33
+ # 如果 location 不是坐标格式(例如 "116.41,39.92"),则调用 GeoAPI 获取 LocationID
34
+ if not ("," in location and location.replace(",", "").replace(".", "").isdigit()):
35
+ # 使用 GeoAPI 获取 LocationID
36
+ geo_url = f"https://geoapi.qweather.com/v2/city/lookup?location={location}&key={self.api_key}"
37
+ geo_response = requests.get(geo_url)
38
+ geo_data = geo_response.json()
39
+
40
+ if geo_data.get("code") != "200" or not geo_data.get("location"):
41
+ raise Exception(f"GeoAPI 返回错误码:{geo_data.get('code')} 或未找到位置")
42
+
43
+ location = geo_data["location"][0]["id"]
44
+
45
+ # 构建天气查询的 API 请求 URL
46
+ weather_url = f"https://devapi.qweather.com/v7/weather/now?location={location}&key={self.api_key}"
47
+ response = requests.get(weather_url)
48
+ data = response.json()
49
+
50
+ # 检查 API 响应码
51
+ if data.get("code") != "200":
52
+ raise Exception(f"Weather API 返回错误码:{data.get('code')}")
53
+
54
+ # 解析和组织天气信息
55
+ weather_info = {
56
+ "location": location,
57
+ "weather": data["now"]["text"],
58
+ "temperature": data["now"]["temp"] + "°C",
59
+ "wind_direction": data["now"]["windDir"],
60
+ "wind_speed": data["now"]["windSpeed"] + " km/h",
61
+ "humidity": data["now"]["humidity"] + "%",
62
+ "report_time": data["updateTime"]
63
+ }
64
+
65
+ return {"result": weather_info}
66
+
67
+ except Exception as exc:
68
+ return ActionReturn(
69
+ errmsg=f"WeatherQuery 异常:{exc}",
70
+ state=ActionStatusCode.HTTP_ERROR
71
+ )
lagent/lagent/actions/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.47 kB). View file
 
lagent/lagent/actions/__pycache__/action_executor.cpython-310.pyc ADDED
Binary file (5.84 kB). View file
 
lagent/lagent/actions/__pycache__/arxiv_search.cpython-310.pyc ADDED
Binary file (3.19 kB). View file
 
lagent/lagent/actions/__pycache__/base_action.cpython-310.pyc ADDED
Binary file (11.6 kB). View file
 
lagent/lagent/actions/__pycache__/bing_map.cpython-310.pyc ADDED
Binary file (7.79 kB). View file
 
lagent/lagent/actions/__pycache__/builtin_actions.cpython-310.pyc ADDED
Binary file (3.89 kB). View file
 
lagent/lagent/actions/__pycache__/google_scholar_search.cpython-310.pyc ADDED
Binary file (13 kB). View file
 
lagent/lagent/actions/__pycache__/google_search.cpython-310.pyc ADDED
Binary file (6.93 kB). View file
 
lagent/lagent/actions/__pycache__/ipython_interactive.cpython-310.pyc ADDED
Binary file (8.41 kB). View file
 
lagent/lagent/actions/__pycache__/ipython_interpreter.cpython-310.pyc ADDED
Binary file (16.6 kB). View file
 
lagent/lagent/actions/__pycache__/ipython_manager.cpython-310.pyc ADDED
Binary file (7.11 kB). View file
 
lagent/lagent/actions/__pycache__/parser.cpython-310.pyc ADDED
Binary file (5.48 kB). View file
 
lagent/lagent/actions/__pycache__/ppt.cpython-310.pyc ADDED
Binary file (6.81 kB). View file
 
lagent/lagent/actions/__pycache__/python_interpreter.cpython-310.pyc ADDED
Binary file (5.38 kB). View file
 
lagent/lagent/actions/__pycache__/weather_query.cpython-310.pyc ADDED
Binary file (2.66 kB). View file
 
lagent/lagent/actions/__pycache__/web_browser.cpython-310.pyc ADDED
Binary file (28.8 kB). View file
 
lagent/lagent/agents/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (547 Bytes). View file
 
lagent/lagent/agents/__pycache__/agent.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
lagent/lagent/agents/__pycache__/react.cpython-310.pyc ADDED
Binary file (4.85 kB). View file
 
lagent/lagent/agents/__pycache__/stream.cpython-310.pyc ADDED
Binary file (8.95 kB). View file
 
lagent/lagent/agents/aggregator/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (305 Bytes). View file
 
lagent/lagent/agents/aggregator/__pycache__/default_aggregator.cpython-310.pyc ADDED
Binary file (1.6 kB). View file
 
lagent/lagent/agents/aggregator/__pycache__/tool_aggregator.cpython-310.pyc ADDED
Binary file (2.71 kB). View file
 
lagent/lagent/hooks/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (387 Bytes). View file
 
lagent/lagent/hooks/__pycache__/action_preprocessor.cpython-310.pyc ADDED
Binary file (2.29 kB). View file
 
lagent/lagent/hooks/__pycache__/hook.cpython-310.pyc ADDED
Binary file (1.53 kB). View file
 
lagent/lagent/hooks/__pycache__/logger.cpython-310.pyc ADDED
Binary file (1.77 kB). View file
 
lagent/lagent/llms/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (925 Bytes). View file
 
lagent/lagent/llms/__pycache__/base_api.cpython-310.pyc ADDED
Binary file (5.29 kB). View file
 
lagent/lagent/llms/__pycache__/base_llm.cpython-310.pyc ADDED
Binary file (7.96 kB). View file
 
lagent/lagent/llms/__pycache__/huggingface.cpython-310.pyc ADDED
Binary file (9.67 kB). View file
 
lagent/lagent/llms/__pycache__/lmdeploy_wrapper.cpython-310.pyc ADDED
Binary file (22.5 kB). View file
 
lagent/lagent/llms/__pycache__/meta_template.cpython-310.pyc ADDED
Binary file (751 Bytes). View file
 
lagent/lagent/llms/__pycache__/openai.cpython-310.pyc ADDED
Binary file (17.4 kB). View file
 
lagent/lagent/llms/__pycache__/sensenova.cpython-310.pyc ADDED
Binary file (9.99 kB). View file
 
lagent/lagent/llms/__pycache__/vllm_wrapper.cpython-310.pyc ADDED
Binary file (6.18 kB). View file
 
lagent/lagent/memory/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (259 Bytes). View file
 
lagent/lagent/memory/__pycache__/base_memory.cpython-310.pyc ADDED
Binary file (2.24 kB). View file