wldmr's picture
init
68d26c9
raw
history blame
1.82 kB
# Import nltk library for natural language processing
import nltk
import os
from transformers import AutoTokenizer
def load_nltk():
nltk_file = '/home/user/nltk_data/tokenizers/punkt.zip'
if os.path.exists(nltk_file):
print('nltk punkt file exists in ', nltk_file)
else:
print("downloading punkt file")
nltk.download('punkt')
# Define a function that takes some text as input and returns the number of tokens
def token_count(text):
# Import the Encoder class from bpe
from bpe import Encoder
# Create an encoder object with a vocabulary size of 10
encoder = Encoder(vocab_size=14735746)
# Train the encoder on the text
encoder.fit(text.split())
# Encode the text into tokens
tokens = encoder.tokenize(text)
# Return the number of tokens
return tokens
def num_tokens(text):
tokenizer = AutoTokenizer.from_pretrained("gpt2")
token_ids = tokenizer.encode(text)
token_size = len(token_ids)
return token_size
def num_words(text):
sentences = nltk.sent_tokenize(text)
# Tokenize each sentence into words using nltk.word_tokenize()
words = []
for sentence in sentences:
words.extend(nltk.word_tokenize(sentence))
num_words = len(words)
return num_words
def num_sentences(text):
# Tokenize the text into sentences using nltk.sent_tokenize()
sentences = nltk.sent_tokenize(text)
num_sentences = len(sentences)
return num_sentences
def num_chars(text):
num_characters = len(text)
return num_characters
# Print out the results
# print(f"Number of sentences: {num_sentences}")
# print(f"Number of words: {num_words}")
# print(f"Number of tokens: {num_tokens}")
# print(f"Number of trans_tokens: {trans_tokens}")
# print(f"Number of characters: {num_characters}")