File size: 1,821 Bytes
68d26c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Import nltk library for natural language processing
import nltk
import os
from transformers import AutoTokenizer

def load_nltk():
    nltk_file = '/home/user/nltk_data/tokenizers/punkt.zip'
    if os.path.exists(nltk_file):
        print('nltk punkt file exists in ', nltk_file)
    else:
        print("downloading punkt file")
        nltk.download('punkt')


# Define a function that takes some text as input and returns the number of tokens
def token_count(text):
    # Import the Encoder class from bpe
    from bpe import Encoder
    # Create an encoder object with a vocabulary size of 10
    encoder = Encoder(vocab_size=14735746)

    # Train the encoder on the text
    encoder.fit(text.split())

    # Encode the text into tokens
    tokens = encoder.tokenize(text)

    # Return the number of tokens
    return tokens

def num_tokens(text):

    tokenizer = AutoTokenizer.from_pretrained("gpt2")

    token_ids = tokenizer.encode(text)

    token_size = len(token_ids)

    return token_size

def num_words(text):
    sentences = nltk.sent_tokenize(text)
    # Tokenize each sentence into words using nltk.word_tokenize()
    words = []
    for sentence in sentences:
        words.extend(nltk.word_tokenize(sentence))
    
    num_words = len(words)

    return num_words

def num_sentences(text):
    # Tokenize the text into sentences using nltk.sent_tokenize()
    sentences = nltk.sent_tokenize(text)
    num_sentences = len(sentences)
    return num_sentences


def num_chars(text):
    num_characters = len(text)
    return num_characters


# Print out the results
# print(f"Number of sentences: {num_sentences}")
# print(f"Number of words: {num_words}")
# print(f"Number of tokens: {num_tokens}")
# print(f"Number of trans_tokens: {trans_tokens}")
# print(f"Number of characters: {num_characters}")