File size: 22,911 Bytes
88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 45c8cce 88e0f7f 3b165bd 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f 7cf7655 88e0f7f b238a01 88e0f7f b238a01 e986abb 88e0f7f b238a01 88e0f7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
import json
from typing import Tuple
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.figure_factory as ff
import plotly.graph_objects as go
import streamlit as st
from plotly.subplots import make_subplots
from exp_utils import MODELS
from visualize_utils import viridis_rgb
st.set_page_config(
page_title="Results Viewer",
page_icon="📊",
initial_sidebar_state="expanded",
layout="wide",
)
MODELS_SIZE_MAPPING = {k: v["model_size"] for k, v in MODELS.items()}
MODELS_FAMILY_MAPPING = {k: v["model_family"] for k, v in MODELS.items()}
MODEL_FAMILES = set([model["model_family"] for model in MODELS.values()])
Q_W_MODELS = [
"llama-7b",
"llama-2-7b",
"llama-13b",
"llama-2-13b",
"llama-30b",
"llama-65b",
"llama-2-70b",
]
Q_W_MODELS = [f"{model}_quantized" for model in Q_W_MODELS] + [
f"{model}_watermarked" for model in Q_W_MODELS
]
MODEL_NAMES = list(MODELS.keys()) + Q_W_MODELS
MODEL_NAMES_SORTED_BY_NAME_AND_SIZE = sorted(
MODEL_NAMES,
key=lambda x: (
MODELS[x.replace("_quantized", "").replace("_watermarked", "")]["model_family"],
MODELS[x.replace("_quantized", "").replace("_watermarked", "")]["model_size"],
),
)
MODEL_NAMES_SORTED_BY_SIZE = sorted(
MODEL_NAMES,
key=lambda x: (
MODELS[x.replace("_quantized", "").replace("_watermarked", "")]["model_size"],
MODELS[x.replace("_quantized", "").replace("_watermarked", "")]["model_family"],
),
)
# sort MODELS_SIZE_MAPPING by value then by key
MODELS_SIZE_MAPPING = {
k: v
for k, v in sorted(MODELS_SIZE_MAPPING.items(), key=lambda item: (item[1], item[0]))
}
MODELS_SIZE_MAPPING_LIST = list(MODELS_SIZE_MAPPING.keys())
CHAT_MODELS = [
x
for x in MODEL_NAMES_SORTED_BY_NAME_AND_SIZE
if MODELS[x.replace("_quantized", "").replace("_watermarked", "")]["is_chat"]
]
def clean_dataframe(df: pd.DataFrame) -> pd.DataFrame:
# remove all columns that have "_loss" and "_runtime" in them
words_to_remove = [
"epoch",
"loss",
"runtime",
"samples_per_second",
"steps_per_second",
"samples",
"results_dir",
]
df = df.loc[
:,
~df.columns.str.contains("|".join(words_to_remove), case=False, regex=True),
]
# rename the rest of the columns by replacing "_roc_auc" with ""
df.columns = df.columns.str.replace("_roc_auc", "")
df.columns = df.columns.str.replace("eval_", "")
df["model_family"] = df["model_name"].apply(
lambda x: MODELS_FAMILY_MAPPING[
x.replace("_quantized", "").replace("_watermarked", "")
]
)
# create a dict with the model_name and the model_family
model_family_dict = {
k: v
for k, v in zip(
df["model_name"].values.tolist(), df["model_family"].values.tolist()
)
}
# average the results over the 5 seeds for each model (seed column is exp_seed)
df_avg = df.groupby(["model_name"]).mean()
df_std = df.groupby(["model_name"]).std()
# remove the exp_seed column
df_avg = df_avg.drop(columns=["exp_seed"])
df_std = df_std.drop(columns=["exp_seed"])
df_avg["model_family"] = df_avg.index.map(model_family_dict)
df_std["model_family"] = df_std.index.map(model_family_dict)
df_avg["model_size"] = df_avg.index.map(
lambda x: MODELS_SIZE_MAPPING[
x.replace("_quantized", "").replace("_watermarked", "")
]
)
df_std["model_size"] = df_std.index.map(
lambda x: MODELS_SIZE_MAPPING[
x.replace("_quantized", "").replace("_watermarked", "")
]
)
# sort rows by model family then model size
df_avg = df_avg.sort_values(
by=["model_family", "model_size"], ascending=[True, True]
)
df_std = df_std.sort_values(
by=["model_family", "model_size"], ascending=[True, True]
)
availables_rows = [x for x in df_avg.columns if x in df_avg.index]
df_avg = df_avg.reindex(availables_rows)
availables_rows = [x for x in df_std.columns if x in df_std.index]
df_std = df_std.reindex(availables_rows)
df_avg["is_quantized"] = df_avg.index.str.contains("quantized")
df_avg["is_watermarked"] = df_avg.index.str.contains("watermarked")
df_std["is_quantized"] = df_std.index.str.contains("quantized")
df_std["is_watermarked"] = df_std.index.str.contains("watermarked")
return df_avg, df_std
def get_data(path) -> Tuple[pd.DataFrame, pd.DataFrame]:
df, df_std = clean_dataframe(pd.read_csv(path, index_col=0))
return df, df_std
def filter_df(
df: pd.DataFrame,
model_family_train: list,
model_family_test: list,
model_size_train: tuple,
model_size_test: tuple,
is_chat_train: bool,
is_chat_test: bool,
is_quantized_train: bool,
is_quantized_test: bool,
is_watermarked_train: bool,
is_watermarked_test: bool,
sort_by_size: bool,
split_chat_models: bool,
split_quantized_models: bool,
split_watermarked_models: bool,
filter_empty_col_row: bool,
is_debug: bool,
) -> pd.DataFrame:
# remove all columns and rows that have "pythia-70m" in the name
# filter rows
if is_debug:
st.write("No filters")
st.write(df)
df = df.loc[
(df["model_size"] >= model_size_train[0] * 1e9)
& (df["model_size"] <= model_size_train[1] * 1e9)
]
if is_debug:
st.write("Filter model size train")
st.write(df)
df = df.loc[df["model_family"].isin(model_family_train)]
if is_debug:
st.write("Filter model family train")
st.write(df)
if is_chat_train != "Both":
df = df.loc[df["is_chat"] == is_chat_train]
if is_debug:
st.write("Filter is chat train")
st.write(df)
if is_quantized_train != "Both":
df = df.loc[df["is_quantized"] == is_quantized_train]
if is_debug:
st.write("Filter is quantized train")
st.write(df)
if is_watermarked_train != "Both":
df = df.loc[df["is_watermarked"] == is_watermarked_train]
if is_debug:
st.write("Filter is watermark train")
st.write(df)
# filter columns
if is_debug:
st.write("No filters")
st.write(df)
columns_to_keep = []
for column in df.columns:
if (
column.replace("_quantized", "").replace("_watermarked", "")
in MODELS.keys()
):
model_size = MODELS[
column.replace("_quantized", "").replace("_watermarked", "")
]["model_size"]
if (
model_size >= model_size_test[0] * 1e9
and model_size <= model_size_test[1] * 1e9
):
columns_to_keep.append(column)
df = df[list(sorted(list(set(columns_to_keep))))]
if is_debug:
st.write("Filter model size test")
st.write(df)
# filter columns
columns_to_keep = []
for column in df.columns:
for model_family in model_family_test:
if (
model_family
== MODELS[column.replace("_quantized", "").replace("_watermarked", "")][
"model_family"
]
):
columns_to_keep.append(column)
df = df[list(sorted(list(set(columns_to_keep))))]
if is_debug:
st.write("Filter model family test")
st.write(df)
if is_chat_test != "Both":
# filter columns
columns_to_keep = []
for column in df.columns:
if (
MODELS[column.replace("_quantized", "").replace("_watermarked", "")][
"is_chat"
]
== is_chat_test
):
columns_to_keep.append(column)
df = df[list(sorted(list(set(columns_to_keep))))]
if is_debug:
st.write("Filter is chat test")
st.write(df)
if is_quantized_test != "Both":
# filter columns
columns_to_keep = []
for column in df.columns:
if "quantized" in column and is_quantized_test:
columns_to_keep.append(column)
elif "quantized" not in column and not is_quantized_test:
columns_to_keep.append(column)
df = df[list(sorted(list(set(columns_to_keep))))]
if is_debug:
st.write("Filter is quantized test")
st.write(df)
if is_watermarked_test != "Both":
# filter columns
columns_to_keep = []
for column in df.columns:
if "watermark" in column and is_watermarked_test:
columns_to_keep.append(column)
elif "watermark" not in column and not is_watermarked_test:
columns_to_keep.append(column)
df = df[list(sorted(list(set(columns_to_keep))))]
if is_debug:
st.write("Filter is watermark test")
st.write(df)
df = df.select_dtypes(include="number")
if is_debug:
st.write("Select dtypes to be only numbers")
st.write(df)
if sort_by_size:
columns_in = [x for x in MODEL_NAMES_SORTED_BY_SIZE if x in df.columns]
else:
columns_in = [x for x in MODEL_NAMES_SORTED_BY_NAME_AND_SIZE if x in df.columns]
df = df[columns_in]
if is_debug:
st.write("Sort columns")
st.write(df)
# sort rows by size according the MODELS_SIZE_MAPPING_LIST
if sort_by_size:
availables_rows = [x for x in MODEL_NAMES_SORTED_BY_SIZE if x in df.index]
df = df.reindex(availables_rows)
else:
availables_rows = [
x for x in MODEL_NAMES_SORTED_BY_NAME_AND_SIZE if x in df.index
]
df = df.reindex(availables_rows)
if is_debug:
st.write("Sort rows")
st.write(df)
if split_chat_models:
# put chat models at the end of the columns
chat_models = [x for x in CHAT_MODELS if x in df.columns]
# sort chat models by size
chat_models = sorted(chat_models, key=lambda x: MODELS[x]["model_size"])
df = df[[x for x in df.columns if x not in chat_models] + chat_models]
# put chat models at the end of the rows
chat_models = [x for x in CHAT_MODELS if x in df.index]
# sort chat models by size
chat_models = sorted(chat_models, key=lambda x: MODELS[x]["model_size"])
df = df.reindex([x for x in df.index if x not in chat_models] + chat_models)
if is_debug:
st.write("Split chat models")
st.write(df)
if split_quantized_models:
# put chat models at the end of the columns
quantized_models = [
x for x in Q_W_MODELS if x in df.columns and "quantized" in x
]
# sort chat models by size
quantized_models = sorted(
quantized_models,
key=lambda x: MODELS[
x.replace("_quantized", "").replace("_watermarked", "")
]["model_size"],
)
df = df[[x for x in df.columns if x not in quantized_models] + quantized_models]
# put chat models at the end of the rows
quantized_models = [x for x in Q_W_MODELS if x in df.index and "quantized" in x]
# sort chat models by size
quantized_models = sorted(
quantized_models,
key=lambda x: MODELS[
x.replace("_quantized", "").replace("_watermarked", "")
]["model_size"],
)
df = df.reindex(
[x for x in df.index if x not in quantized_models] + quantized_models
)
if split_watermarked_models:
# put chat models at the end of the columns
watermarked_models = [
x for x in Q_W_MODELS if x in df.columns and "watermarked" in x
]
# sort chat models by size
watermarked_models = sorted(
watermarked_models,
key=lambda x: MODELS[
x.replace("_quantized", "").replace("_watermarked", "")
]["model_size"],
)
df = df[
[x for x in df.columns if x not in watermarked_models] + watermarked_models
]
# put chat models at the end of the rows
watermarked_models = [
x for x in Q_W_MODELS if x in df.index and "watermarked" in x
]
# sort chat models by size
watermarked_models = sorted(
watermarked_models,
key=lambda x: MODELS[
x.replace("_quantized", "").replace("_watermarked", "")
]["model_size"],
)
df = df.reindex(
[x for x in df.index if x not in watermarked_models] + watermarked_models
)
if is_debug:
st.write("Split chat models")
st.write(df)
if filter_empty_col_row:
# remove all for which the row and column are Nan
df = df.dropna(axis=0, how="all")
df = df.dropna(axis=1, how="all")
return df
df, df_std = get_data("./deberta_results.csv")
df_q_w, df_std_q_w = get_data("./results_qantized_watermarked.csv")
df = df.merge(
df_q_w[
df_q_w.columns[
df_q_w.columns.str.contains("quantized|watermarked", case=False, regex=True)
]
],
how="outer",
left_index=True,
right_index=True,
)
df_std = df_std.merge(
df_std_q_w[
df_std_q_w.columns[
df_std_q_w.columns.str.contains(
"quantized|watermarked", case=False, regex=True
)
]
],
how="outer",
left_index=True,
right_index=True,
)
df.columns = df.columns.str.replace("_y", "", regex=True)
df_std.columns = df_std.columns.str.replace("_y", "", regex=True)
df = df.drop(columns=["is_quantized_x", "is_watermarked_x"])
df.update(df_q_w)
df_std.update(df_std_q_w)
df["is_chat"].fillna(False, inplace=True)
df_std["is_chat"].fillna(False, inplace=True)
df["is_watermarked"].fillna(False, inplace=True)
df_std["is_watermarked"].fillna(False, inplace=True)
df["is_quantized"].fillna(False, inplace=True)
df_std["is_quantized"].fillna(False, inplace=True)
with open("./ood_results.json", "r") as f:
ood_results = json.load(f)
ood_results = pd.DataFrame(ood_results)
ood_results = ood_results.set_index("model_name")
ood_results = ood_results.drop(
columns=["exp_name", "accuracy", "f1", "precision", "recall"]
)
ood_results.columns = ["seed", "Adversarial"]
ood_results_avg = ood_results.groupby(["model_name"]).mean()
ood_results_std = ood_results.groupby(["model_name"]).std()
st.write(
"""### Results Viewer 👇
## From Text to Source: Results in Detecting Large Language Model-Generated Content
### Wissam Antoun, Benoît Sagot, Djamé Seddah
##### ALMAnaCH, Inria
##### Paper: [https://arxiv.org/abs/2309.13322](https://arxiv.org/abs/2309.13322)
"""
)
# filters
show_diff = st.sidebar.checkbox("Show Diff", value=False)
sort_by_size = st.sidebar.checkbox("Sort by size", value=True)
split_chat_models = st.sidebar.checkbox("Split chat models", value=True)
split_quantized_models = st.sidebar.checkbox("Split quantized models", value=True)
split_watermarked_models = st.sidebar.checkbox("Split watermarked models", value=True)
add_mean = st.sidebar.checkbox("Add mean", value=False)
show_std = st.sidebar.checkbox("Show std", value=False)
filter_empty_col_row = st.sidebar.checkbox("Filter empty col/row", value=True)
model_size_train = st.sidebar.slider(
"Train Model Size in Billion", min_value=0, max_value=100, value=(0, 100), step=1
)
model_size_test = st.sidebar.slider(
"Test Model Size in Billion", min_value=0, max_value=100, value=(0, 100), step=1
)
is_chat_train = st.sidebar.selectbox("(Train) Is Chat?", [True, False, "Both"], index=2)
is_chat_test = st.sidebar.selectbox("(Test) Is Chat?", [True, False, "Both"], index=2)
is_quantized_train = st.sidebar.selectbox(
"(Train) Is Quantized?", [True, False, "Both"], index=1
)
is_quantized_test = st.sidebar.selectbox(
"(Test) Is Quantized?", [True, False, "Both"], index=1
)
is_watermarked_train = st.sidebar.selectbox(
"(Train) Is Watermark?", [True, False, "Both"], index=1
)
is_watermarked_test = st.sidebar.selectbox(
"(Test) Is Watermark?", [True, False, "Both"], index=1
)
model_family_train = st.sidebar.multiselect(
"Model Family Train",
MODEL_FAMILES,
default=MODEL_FAMILES,
)
model_family_test = st.sidebar.multiselect(
"Model Family Test",
list(MODEL_FAMILES) + ["Adversarial"],
default=MODEL_FAMILES,
)
show_values = st.sidebar.checkbox("Show Values", value=False)
add_adversarial = False
if "Adversarial" in model_family_test:
model_family_test.remove("Adversarial")
add_adversarial = True
sort_by_adversarial = False
if add_adversarial:
sort_by_adversarial = st.sidebar.checkbox("Sort by adversarial", value=False)
if st.sidebar.checkbox("Use default color scale", value=False):
color_scale = "Viridis_r"
else:
color_scale = viridis_rgb
is_debug = st.sidebar.checkbox("Debug", value=False)
if show_std:
selected_df = df_std.copy()
else:
selected_df = df.copy()
filtered_df = filter_df(
selected_df,
model_family_train,
model_family_test,
model_size_train,
model_size_test,
is_chat_train,
is_chat_test,
is_quantized_train,
is_quantized_test,
is_watermarked_train,
is_watermarked_test,
sort_by_size,
split_chat_models,
split_quantized_models,
split_watermarked_models,
filter_empty_col_row,
is_debug,
)
if show_diff:
# get those 3 columns {'model_size', 'model_family', 'is_chat'}
diag = filtered_df.values.diagonal()
filtered_df = filtered_df.sub(diag, axis=1)
# subtract each row by the diagonal
if add_adversarial:
if show_diff:
index = filtered_df.index
ood_results_avg = ood_results_avg.loc[index]
filtered_df = filtered_df.join(ood_results_avg.sub(diag, axis=0))
else:
filtered_df = filtered_df.join(ood_results_avg)
if add_mean:
col_mean = filtered_df.mean(axis=1)
row_mean = filtered_df.mean(axis=0)
diag = filtered_df.values.diagonal()
filtered_df["mean"] = col_mean
filtered_df.loc["mean"] = row_mean
filtered_df = filtered_df * 100
filtered_df = filtered_df.round(0)
# sort by the column called Adversarial
if sort_by_adversarial:
filtered_df = filtered_df.sort_values(by=["Adversarial"], ascending=False)
# check if the df has columns and rows
if filtered_df.shape[0] == 0:
st.write("No results found")
st.stop()
if filtered_df.shape[1] == 0:
st.write("No results found")
st.stop()
fig = px.imshow(
filtered_df.values,
x=list(filtered_df.columns),
y=list(filtered_df.index),
color_continuous_scale=color_scale,
contrast_rescaling=None,
text_auto=show_values,
aspect="auto",
)
# width = st.sidebar.text_input("Width", "1920")
# height = st.sidebar.text_input("Height", "1080")
# scale = st.sidebar.text_input("Scale", "1.0")
# margin = st.sidebar.text_input("Margin[l,r,b,t]", "200,100,100,100")
fig.update_traces(textfont_size=9)
fig.update_layout(
xaxis={"side": "top"},
yaxis={"side": "left"},
# margin=dict(
# l=int(margin.split(",")[0]),
# r=int(margin.split(",")[1]),
# b=int(margin.split(",")[2]),
# t=int(margin.split(",")[3]),
# ),
font=dict(size=10),
)
fig.update_xaxes(tickangle=45)
fig.update_xaxes(tickmode="linear")
fig.update_yaxes(tickmode="linear")
# change the font in the heatmap
st.plotly_chart(fig, use_container_width=True)
# if st.sidebar.button("save", key="save"):
# fig.write_image(
# "fig1.pdf",
# width=int(width),
# height=int(height),
# validate=True,
# scale=float(scale),
# )
# plot the col mean vs model size
if add_mean and not show_diff:
# check if any of the chat models are in the filtered df columns and index
if len([x for x in CHAT_MODELS if x in filtered_df.columns]) > 0 or len(
[x for x in CHAT_MODELS if x in filtered_df.index]
):
st.warning(
"Chat models are in the filtered df columns or index."
"This will cause the mean graph to be skewed."
)
fig3 = px.scatter(
y=row_mean,
x=[MODELS[x]["model_size"] for x in filtered_df.columns if x not in ["mean"]],
# hover_data=[x for x in filtered_df.index if x not in ["mean"]],
color=[
MODELS[x]["model_family"] for x in filtered_df.columns if x not in ["mean"]
],
color_discrete_sequence=px.colors.qualitative.Plotly,
title="",
# x axis title
labels={
"x": "Target Model Size",
"y": "Average ROC AUC",
"color": "Model Family",
},
log_x=True,
trendline="ols",
)
fig4 = px.scatter(
y=diag,
x=[MODELS[x]["model_size"] for x in filtered_df.columns if x not in ["mean"]],
# hover_data=[x for x in filtered_df.index if x not in ["mean"]],
color=[
MODELS[x]["model_family"] for x in filtered_df.columns if x not in ["mean"]
],
color_discrete_sequence=px.colors.qualitative.Plotly,
title="",
# x axis title
labels={
"x": "Target Model Size",
"y": "Self ROC AUC",
"color": "Model Family",
},
log_x=True,
trendline="ols",
)
# put the two plots side by side
fig_subplot = make_subplots(
rows=1,
cols=2,
shared_yaxes=False,
subplot_titles=("Self Detection ROC AUC", "Average Target ROC AUC"),
)
for i, figure in enumerate([fig4, fig3]):
for trace in range(len(figure["data"])):
trace_data = figure["data"][trace]
if i == 1:
trace_data["showlegend"] = False
fig_subplot.append_trace(trace_data, row=1, col=i + 1)
fig_subplot.update_xaxes(type="log")
# y axis range
fig_subplot.update_yaxes(range=[0.90, 1])
fig_subplot.update_layout(
height=500,
width=1200,
)
# put the legend on the bottom
fig_subplot.update_layout(
legend=dict(orientation="h", yanchor="bottom", y=-0.2, x=0.09)
)
st.plotly_chart(fig_subplot, use_container_width=True)
fig2 = px.scatter(
y=col_mean,
x=[MODELS_SIZE_MAPPING[x] for x in filtered_df.index if x not in ["mean"]],
# hover_data=[x for x in filtered_df.index if x not in ["mean"]],
color=[
MODELS_FAMILY_MAPPING[x] for x in filtered_df.index if x not in ["mean"]
],
color_discrete_sequence=px.colors.qualitative.Plotly,
title="Mean vs Train Model Size",
log_x=True,
trendline="ols",
)
fig2.update_layout(
height=600,
width=900,
)
st.plotly_chart(fig2, use_container_width=False)
|