wissamantoun
commited on
Commit
·
88e0f7f
1
Parent(s):
7922adf
Upload 4 files
Browse files- app.py +486 -0
- deberta_results.csv +0 -0
- exp_utils.py +1157 -0
- visualize_utils.py +57 -0
app.py
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import plotly.express as px
|
6 |
+
import plotly.figure_factory as ff
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
import streamlit as st
|
9 |
+
from plotly.subplots import make_subplots
|
10 |
+
|
11 |
+
from exp_utils import MODELS
|
12 |
+
from visualize_utils import viridis_rgb
|
13 |
+
|
14 |
+
#
|
15 |
+
|
16 |
+
st.set_page_config(
|
17 |
+
page_title="Results Viewer",
|
18 |
+
page_icon="📊",
|
19 |
+
initial_sidebar_state="expanded",
|
20 |
+
layout="wide",
|
21 |
+
)
|
22 |
+
|
23 |
+
MODELS_SIZE_MAPPING = {k: v["model_size"] for k, v in MODELS.items()}
|
24 |
+
MODELS_FAMILY_MAPPING = {k: v["model_family"] for k, v in MODELS.items()}
|
25 |
+
MODEL_FAMILES = set([model["model_family"] for model in MODELS.values()])
|
26 |
+
MODEL_NAMES = list(MODELS.keys())
|
27 |
+
|
28 |
+
MODEL_NAMES_SORTED_BY_NAME_AND_SIZE = sorted(
|
29 |
+
MODEL_NAMES, key=lambda x: (MODELS[x]["model_family"], MODELS[x]["model_size"])
|
30 |
+
)
|
31 |
+
|
32 |
+
MODEL_NAMES_SORTED_BY_SIZE = sorted(
|
33 |
+
MODEL_NAMES, key=lambda x: (MODELS[x]["model_size"], MODELS[x]["model_family"])
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
# sort MODELS_SIZE_MAPPING by value then by key
|
38 |
+
MODELS_SIZE_MAPPING = {
|
39 |
+
k: v
|
40 |
+
for k, v in sorted(MODELS_SIZE_MAPPING.items(), key=lambda item: (item[1], item[0]))
|
41 |
+
}
|
42 |
+
|
43 |
+
MODELS_SIZE_MAPPING_LIST = list(MODELS_SIZE_MAPPING.keys())
|
44 |
+
|
45 |
+
|
46 |
+
CHAT_MODELS = [x for x in MODEL_NAMES_SORTED_BY_NAME_AND_SIZE if MODELS[x]["is_chat"]]
|
47 |
+
|
48 |
+
|
49 |
+
def clean_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
50 |
+
# remove all columns that have "_loss" and "_runtime" in them
|
51 |
+
words_to_remove = [
|
52 |
+
"epoch",
|
53 |
+
"loss",
|
54 |
+
"runtime",
|
55 |
+
"samples_per_second",
|
56 |
+
"steps_per_second",
|
57 |
+
"samples",
|
58 |
+
"results_dir",
|
59 |
+
]
|
60 |
+
df = df.loc[
|
61 |
+
:,
|
62 |
+
~df.columns.str.contains("|".join(words_to_remove), case=False, regex=True),
|
63 |
+
]
|
64 |
+
|
65 |
+
# rename the rest of the columns by replacing "_roc_auc" with ""
|
66 |
+
df.columns = df.columns.str.replace("_roc_auc", "")
|
67 |
+
df.columns = df.columns.str.replace("eval_", "")
|
68 |
+
|
69 |
+
df["model_family"] = df["model_name"].map(MODELS_FAMILY_MAPPING)
|
70 |
+
# create a dict with the model_name and the model_family
|
71 |
+
model_family_dict = {
|
72 |
+
k: v
|
73 |
+
for k, v in zip(
|
74 |
+
df["model_name"].values.tolist(), df["model_family"].values.tolist()
|
75 |
+
)
|
76 |
+
}
|
77 |
+
|
78 |
+
# average the results over the 5 seeds for each model (seed column is exp_seed)
|
79 |
+
df_avg = df.groupby(["model_name"]).mean()
|
80 |
+
df_std = df.groupby(["model_name"]).std()
|
81 |
+
|
82 |
+
# remove the exp_seed column
|
83 |
+
df_avg = df_avg.drop(columns=["exp_seed"])
|
84 |
+
df_std = df_std.drop(columns=["exp_seed"])
|
85 |
+
df_avg["model_family"] = df_avg.index.map(model_family_dict)
|
86 |
+
df_std["model_family"] = df_std.index.map(model_family_dict)
|
87 |
+
df_avg["model_size"] = df_avg.index.map(MODELS_SIZE_MAPPING)
|
88 |
+
df_std["model_size"] = df_std.index.map(MODELS_SIZE_MAPPING)
|
89 |
+
|
90 |
+
# sort rows by model family then model size
|
91 |
+
df_avg = df_avg.sort_values(
|
92 |
+
by=["model_family", "model_size"], ascending=[True, True]
|
93 |
+
)
|
94 |
+
df_std = df_std.sort_values(
|
95 |
+
by=["model_family", "model_size"], ascending=[True, True]
|
96 |
+
)
|
97 |
+
|
98 |
+
availables_rows = [x for x in df_avg.columns if x in df_avg.index]
|
99 |
+
df_avg = df_avg.reindex(availables_rows)
|
100 |
+
|
101 |
+
availables_rows = [x for x in df_std.columns if x in df_std.index]
|
102 |
+
df_std = df_std.reindex(availables_rows)
|
103 |
+
|
104 |
+
return df_avg, df_std
|
105 |
+
|
106 |
+
|
107 |
+
def get_data(path):
|
108 |
+
df, df_std = clean_dataframe(pd.read_csv(path, index_col=0))
|
109 |
+
return df, df_std
|
110 |
+
|
111 |
+
|
112 |
+
def filter_df(
|
113 |
+
df: pd.DataFrame,
|
114 |
+
model_family_train: list,
|
115 |
+
model_family_test: list,
|
116 |
+
model_size_train: tuple,
|
117 |
+
model_size_test: tuple,
|
118 |
+
is_chat_train: bool,
|
119 |
+
is_chat_test: bool,
|
120 |
+
sort_by_size: bool,
|
121 |
+
split_chat_models: bool,
|
122 |
+
is_debug: bool,
|
123 |
+
) -> pd.DataFrame:
|
124 |
+
# remove all columns and rows that have "pythia-70m" in the name
|
125 |
+
|
126 |
+
# filter rows
|
127 |
+
if is_debug:
|
128 |
+
st.write("No filters")
|
129 |
+
st.write(df)
|
130 |
+
df = df.loc[
|
131 |
+
(df["model_size"] >= model_size_train[0] * 1e9)
|
132 |
+
& (df["model_size"] <= model_size_train[1] * 1e9)
|
133 |
+
]
|
134 |
+
if is_debug:
|
135 |
+
st.write("Filter model size train")
|
136 |
+
st.write(df)
|
137 |
+
df = df.loc[df["model_family"].isin(model_family_train)]
|
138 |
+
if is_debug:
|
139 |
+
st.write("Filter model family train")
|
140 |
+
st.write(df)
|
141 |
+
if is_chat_train != "Both":
|
142 |
+
df = df.loc[df["is_chat"] == is_chat_train]
|
143 |
+
if is_debug:
|
144 |
+
st.write("Filter is chat train")
|
145 |
+
st.write(df)
|
146 |
+
|
147 |
+
# filter columns
|
148 |
+
if is_debug:
|
149 |
+
st.write("No filters")
|
150 |
+
st.write(df)
|
151 |
+
columns_to_keep = []
|
152 |
+
for column in df.columns:
|
153 |
+
if column in MODELS.keys():
|
154 |
+
model_size = MODELS[column]["model_size"]
|
155 |
+
if (
|
156 |
+
model_size >= model_size_test[0] * 1e9
|
157 |
+
and model_size <= model_size_test[1] * 1e9
|
158 |
+
):
|
159 |
+
columns_to_keep.append(column)
|
160 |
+
|
161 |
+
df = df[list(sorted(list(set(columns_to_keep))))]
|
162 |
+
if is_debug:
|
163 |
+
st.write("Filter model size test")
|
164 |
+
st.write(df)
|
165 |
+
|
166 |
+
# filter columns
|
167 |
+
columns_to_keep = []
|
168 |
+
for column in df.columns:
|
169 |
+
for model_family in model_family_test:
|
170 |
+
if model_family == MODELS[column]["model_family"]:
|
171 |
+
columns_to_keep.append(column)
|
172 |
+
df = df[list(sorted(list(set(columns_to_keep))))]
|
173 |
+
if is_debug:
|
174 |
+
st.write("Filter model family test")
|
175 |
+
st.write(df)
|
176 |
+
|
177 |
+
if is_chat_test != "Both":
|
178 |
+
# filter columns
|
179 |
+
columns_to_keep = []
|
180 |
+
for column in df.columns:
|
181 |
+
if MODELS[column]["is_chat"] == is_chat_test:
|
182 |
+
columns_to_keep.append(column)
|
183 |
+
df = df[list(sorted(list(set(columns_to_keep))))]
|
184 |
+
if is_debug:
|
185 |
+
st.write("Filter is chat test")
|
186 |
+
st.write(df)
|
187 |
+
|
188 |
+
df = df.select_dtypes(include="number")
|
189 |
+
if is_debug:
|
190 |
+
st.write("Select dtypes to be only numbers")
|
191 |
+
st.write(df)
|
192 |
+
|
193 |
+
if sort_by_size:
|
194 |
+
columns_in = [x for x in MODEL_NAMES_SORTED_BY_SIZE if x in df.columns]
|
195 |
+
else:
|
196 |
+
columns_in = [x for x in MODEL_NAMES_SORTED_BY_NAME_AND_SIZE if x in df.columns]
|
197 |
+
df = df[columns_in]
|
198 |
+
if is_debug:
|
199 |
+
st.write("Sort columns")
|
200 |
+
st.write(df)
|
201 |
+
|
202 |
+
# sort rows by size according the MODELS_SIZE_MAPPING_LIST
|
203 |
+
if sort_by_size:
|
204 |
+
availables_rows = [x for x in MODEL_NAMES_SORTED_BY_SIZE if x in df.index]
|
205 |
+
df = df.reindex(availables_rows)
|
206 |
+
else:
|
207 |
+
availables_rows = [
|
208 |
+
x for x in MODEL_NAMES_SORTED_BY_NAME_AND_SIZE if x in df.index
|
209 |
+
]
|
210 |
+
df = df.reindex(availables_rows)
|
211 |
+
if is_debug:
|
212 |
+
st.write("Sort rows")
|
213 |
+
st.write(df)
|
214 |
+
|
215 |
+
if split_chat_models:
|
216 |
+
# put chat models at the end of the columns
|
217 |
+
chat_models = [x for x in CHAT_MODELS if x in df.columns]
|
218 |
+
# sort chat models by size
|
219 |
+
chat_models = sorted(chat_models, key=lambda x: MODELS[x]["model_size"])
|
220 |
+
df = df[[x for x in df.columns if x not in chat_models] + chat_models]
|
221 |
+
|
222 |
+
# put chat models at the end of the rows
|
223 |
+
chat_models = [x for x in CHAT_MODELS if x in df.index]
|
224 |
+
# sort chat models by size
|
225 |
+
chat_models = sorted(chat_models, key=lambda x: MODELS[x]["model_size"])
|
226 |
+
df = df.reindex([x for x in df.index if x not in chat_models] + chat_models)
|
227 |
+
if is_debug:
|
228 |
+
st.write("Split chat models")
|
229 |
+
st.write(df)
|
230 |
+
return df
|
231 |
+
|
232 |
+
|
233 |
+
df, df_std = get_data("./deberta_results.csv")
|
234 |
+
|
235 |
+
with open("./ood_results.json", "r") as f:
|
236 |
+
ood_results = json.load(f)
|
237 |
+
|
238 |
+
ood_results = pd.DataFrame(ood_results)
|
239 |
+
ood_results = ood_results.set_index("model_name")
|
240 |
+
ood_results = ood_results.drop(
|
241 |
+
columns=["exp_name", "accuracy", "f1", "precision", "recall"]
|
242 |
+
)
|
243 |
+
ood_results.columns = ["seed", "Adversarial"]
|
244 |
+
|
245 |
+
ood_results_avg = ood_results.groupby(["model_name"]).mean()
|
246 |
+
ood_results_std = ood_results.groupby(["model_name"]).std()
|
247 |
+
|
248 |
+
# filters
|
249 |
+
show_diff = st.sidebar.checkbox("Show Diff", value=False)
|
250 |
+
sort_by_size = st.sidebar.checkbox("Sort by size", value=False)
|
251 |
+
split_chat_models = st.sidebar.checkbox("Split chat models", value=False)
|
252 |
+
add_mean = st.sidebar.checkbox("Add mean", value=False)
|
253 |
+
show_std = st.sidebar.checkbox("Show std", value=False)
|
254 |
+
model_size_train = st.sidebar.slider(
|
255 |
+
"Train Model Size in Billion", min_value=0, max_value=100, value=(0, 100), step=1
|
256 |
+
)
|
257 |
+
model_size_test = st.sidebar.slider(
|
258 |
+
"Test Model Size in Billion", min_value=0, max_value=100, value=(0, 100), step=1
|
259 |
+
)
|
260 |
+
is_chat_train = st.sidebar.selectbox("(Train) Is Chat?", [True, False, "Both"], index=2)
|
261 |
+
is_chat_test = st.sidebar.selectbox("(Test) Is Chat?", [True, False, "Both"], index=2)
|
262 |
+
model_family_train = st.sidebar.multiselect(
|
263 |
+
"Model Family Train",
|
264 |
+
MODEL_FAMILES,
|
265 |
+
default=MODEL_FAMILES,
|
266 |
+
)
|
267 |
+
model_family_test = st.sidebar.multiselect(
|
268 |
+
"Model Family Test",
|
269 |
+
list(MODEL_FAMILES) + ["Adversarial"],
|
270 |
+
default=MODEL_FAMILES,
|
271 |
+
)
|
272 |
+
|
273 |
+
add_adversarial = False
|
274 |
+
if "Adversarial" in model_family_test:
|
275 |
+
model_family_test.remove("Adversarial")
|
276 |
+
add_adversarial = True
|
277 |
+
|
278 |
+
sort_by_adversarial = False
|
279 |
+
if add_adversarial:
|
280 |
+
sort_by_adversarial = st.sidebar.checkbox("Sort by adversarial", value=False)
|
281 |
+
|
282 |
+
if st.sidebar.checkbox("Use default color scale", value=False):
|
283 |
+
color_scale = "Viridis_r"
|
284 |
+
else:
|
285 |
+
color_scale = viridis_rgb
|
286 |
+
|
287 |
+
|
288 |
+
is_debug = st.sidebar.checkbox("Debug", value=False)
|
289 |
+
|
290 |
+
if show_std:
|
291 |
+
selected_df = df_std.copy()
|
292 |
+
else:
|
293 |
+
selected_df = df.copy()
|
294 |
+
|
295 |
+
if show_diff:
|
296 |
+
# get those 3 columns {'model_size', 'model_family', 'is_chat'}
|
297 |
+
columns_to_keep = ["model_size", "model_family", "is_chat"]
|
298 |
+
to_be_added = selected_df[columns_to_keep]
|
299 |
+
selected_df = selected_df.drop(columns=columns_to_keep)
|
300 |
+
selected_df = selected_df.sub(selected_df.values.diagonal(), axis=1)
|
301 |
+
selected_df = selected_df.join(to_be_added)
|
302 |
+
|
303 |
+
|
304 |
+
filtered_df = filter_df(
|
305 |
+
selected_df,
|
306 |
+
model_family_train,
|
307 |
+
model_family_test,
|
308 |
+
model_size_train,
|
309 |
+
model_size_test,
|
310 |
+
is_chat_train,
|
311 |
+
is_chat_test,
|
312 |
+
sort_by_size,
|
313 |
+
split_chat_models,
|
314 |
+
is_debug,
|
315 |
+
)
|
316 |
+
|
317 |
+
|
318 |
+
# subtract each row by the diagonal
|
319 |
+
|
320 |
+
# if show_diff:
|
321 |
+
# filtered_df = filtered_df.sub(filtered_df.values.diagonal(), axis=1)
|
322 |
+
if add_adversarial:
|
323 |
+
filtered_df = filtered_df.join(ood_results_avg)
|
324 |
+
|
325 |
+
if add_mean:
|
326 |
+
col_mean = filtered_df.mean(axis=1)
|
327 |
+
row_mean = filtered_df.mean(axis=0)
|
328 |
+
diag = filtered_df.values.diagonal()
|
329 |
+
filtered_df["mean"] = col_mean
|
330 |
+
filtered_df.loc["mean"] = row_mean
|
331 |
+
|
332 |
+
|
333 |
+
filtered_df = filtered_df * 100
|
334 |
+
filtered_df = filtered_df.round(0)
|
335 |
+
|
336 |
+
# sort by the column called Adversarial
|
337 |
+
if sort_by_adversarial:
|
338 |
+
filtered_df = filtered_df.sort_values(by=["Adversarial"], ascending=False)
|
339 |
+
|
340 |
+
# check if the df has columns and rows
|
341 |
+
if filtered_df.shape[0] == 0:
|
342 |
+
st.write("No results found")
|
343 |
+
st.stop()
|
344 |
+
|
345 |
+
if filtered_df.shape[1] == 0:
|
346 |
+
st.write("No results found")
|
347 |
+
st.stop()
|
348 |
+
|
349 |
+
fig = px.imshow(
|
350 |
+
filtered_df.values,
|
351 |
+
x=list(filtered_df.columns),
|
352 |
+
y=list(filtered_df.index),
|
353 |
+
color_continuous_scale=color_scale,
|
354 |
+
contrast_rescaling=None,
|
355 |
+
text_auto=True,
|
356 |
+
aspect="auto",
|
357 |
+
)
|
358 |
+
|
359 |
+
|
360 |
+
width = st.sidebar.text_input("Width", "1920")
|
361 |
+
height = st.sidebar.text_input("Height", "1080")
|
362 |
+
scale = st.sidebar.text_input("Scale", "1.0")
|
363 |
+
margin = st.sidebar.text_input("Margin[l,r,b,t]", "200,100,100,100")
|
364 |
+
fig.update_traces(textfont_size=9)
|
365 |
+
fig.update_layout(
|
366 |
+
xaxis={"side": "top"},
|
367 |
+
yaxis={"side": "left"},
|
368 |
+
margin=dict(
|
369 |
+
l=int(margin.split(",")[0]),
|
370 |
+
r=int(margin.split(",")[1]),
|
371 |
+
b=int(margin.split(",")[2]),
|
372 |
+
t=int(margin.split(",")[3]),
|
373 |
+
),
|
374 |
+
font=dict(size=10),
|
375 |
+
)
|
376 |
+
fig.update_xaxes(tickangle=45)
|
377 |
+
|
378 |
+
fig.update_xaxes(tickmode="linear")
|
379 |
+
fig.update_yaxes(tickmode="linear")
|
380 |
+
# change the font in the heatmap
|
381 |
+
st.plotly_chart(fig, use_container_width=True)
|
382 |
+
|
383 |
+
|
384 |
+
if st.sidebar.button("save", key="save"):
|
385 |
+
fig.write_image(
|
386 |
+
"fig1.pdf",
|
387 |
+
width=int(width),
|
388 |
+
height=int(height),
|
389 |
+
validate=True,
|
390 |
+
scale=float(scale),
|
391 |
+
)
|
392 |
+
|
393 |
+
|
394 |
+
# plot the col mean vs model size
|
395 |
+
if add_mean and not show_diff:
|
396 |
+
# check if any of the chat models are in the filtered df columns and index
|
397 |
+
if len([x for x in CHAT_MODELS if x in filtered_df.columns]) > 0 or len(
|
398 |
+
[x for x in CHAT_MODELS if x in filtered_df.index]
|
399 |
+
):
|
400 |
+
st.warning(
|
401 |
+
"Chat models are in the filtered df columns or index."
|
402 |
+
"This will cause the mean graph to be skewed."
|
403 |
+
)
|
404 |
+
|
405 |
+
fig3 = px.scatter(
|
406 |
+
y=row_mean,
|
407 |
+
x=[MODELS[x]["model_size"] for x in filtered_df.columns if x not in ["mean"]],
|
408 |
+
# hover_data=[x for x in filtered_df.index if x not in ["mean"]],
|
409 |
+
color=[
|
410 |
+
MODELS[x]["model_family"] for x in filtered_df.columns if x not in ["mean"]
|
411 |
+
],
|
412 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
413 |
+
title="",
|
414 |
+
# x axis title
|
415 |
+
labels={
|
416 |
+
"x": "Target Model Size",
|
417 |
+
"y": "Average ROC AUC",
|
418 |
+
"color": "Model Family",
|
419 |
+
},
|
420 |
+
log_x=True,
|
421 |
+
trendline="ols",
|
422 |
+
)
|
423 |
+
fig4 = px.scatter(
|
424 |
+
y=diag,
|
425 |
+
x=[MODELS[x]["model_size"] for x in filtered_df.columns if x not in ["mean"]],
|
426 |
+
# hover_data=[x for x in filtered_df.index if x not in ["mean"]],
|
427 |
+
color=[
|
428 |
+
MODELS[x]["model_family"] for x in filtered_df.columns if x not in ["mean"]
|
429 |
+
],
|
430 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
431 |
+
title="",
|
432 |
+
# x axis title
|
433 |
+
labels={
|
434 |
+
"x": "Target Model Size",
|
435 |
+
"y": "Self ROC AUC",
|
436 |
+
"color": "Model Family",
|
437 |
+
},
|
438 |
+
log_x=True,
|
439 |
+
trendline="ols",
|
440 |
+
)
|
441 |
+
|
442 |
+
# put the two plots side by side
|
443 |
+
fig_subplot = make_subplots(
|
444 |
+
rows=1,
|
445 |
+
cols=2,
|
446 |
+
shared_yaxes=False,
|
447 |
+
subplot_titles=("Self Detection ROC AUC", "Average Target ROC AUC"),
|
448 |
+
)
|
449 |
+
for i, figure in enumerate([fig4, fig3]):
|
450 |
+
for trace in range(len(figure["data"])):
|
451 |
+
trace_data = figure["data"][trace]
|
452 |
+
if i == 1:
|
453 |
+
trace_data["showlegend"] = False
|
454 |
+
fig_subplot.append_trace(trace_data, row=1, col=i + 1)
|
455 |
+
|
456 |
+
fig_subplot.update_xaxes(type="log")
|
457 |
+
# y axis range
|
458 |
+
fig_subplot.update_yaxes(range=[0.90, 1])
|
459 |
+
|
460 |
+
fig_subplot.update_layout(
|
461 |
+
height=500,
|
462 |
+
width=1200,
|
463 |
+
)
|
464 |
+
# put the legend on the bottom
|
465 |
+
fig_subplot.update_layout(
|
466 |
+
legend=dict(orientation="h", yanchor="bottom", y=-0.2, x=0.09)
|
467 |
+
)
|
468 |
+
st.plotly_chart(fig_subplot, use_container_width=True)
|
469 |
+
|
470 |
+
fig2 = px.scatter(
|
471 |
+
y=col_mean,
|
472 |
+
x=[MODELS_SIZE_MAPPING[x] for x in filtered_df.index if x not in ["mean"]],
|
473 |
+
# hover_data=[x for x in filtered_df.index if x not in ["mean"]],
|
474 |
+
color=[
|
475 |
+
MODELS_FAMILY_MAPPING[x] for x in filtered_df.index if x not in ["mean"]
|
476 |
+
],
|
477 |
+
color_discrete_sequence=px.colors.qualitative.Plotly,
|
478 |
+
title="Mean vs Train Model Size",
|
479 |
+
log_x=True,
|
480 |
+
trendline="ols",
|
481 |
+
)
|
482 |
+
fig2.update_layout(
|
483 |
+
height=600,
|
484 |
+
width=900,
|
485 |
+
)
|
486 |
+
st.plotly_chart(fig2, use_container_width=False)
|
deberta_results.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
exp_utils.py
ADDED
@@ -0,0 +1,1157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LLAMA2
|
2 |
+
# <s>[INST] <<SYS>>
|
3 |
+
# {{ system_prompt }}
|
4 |
+
# <</SYS>>
|
5 |
+
|
6 |
+
# {{ user_msg_1 }} [/INST] {{ model_answer_1 }} </s><s>[INST] {{ user_msg_2 }} [/INST]
|
7 |
+
|
8 |
+
ZERO_SHOT_PROMPT = """A chat between a curious human and an artificial intelligence assistant.
|
9 |
+
The assistant gives helpful, detailed, and polite answers to the human's questions.
|
10 |
+
Human: {{ user_message }}
|
11 |
+
Assistant: """
|
12 |
+
|
13 |
+
ZERO_SHOT_STOPWORD = "Human:"
|
14 |
+
|
15 |
+
LM_PROMPT = """Give the best continuation of the following text: {{ user_message }}"""
|
16 |
+
|
17 |
+
LLAMA2_PROMPT = """<s>[INST] <<SYS>>
|
18 |
+
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
19 |
+
|
20 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
|
21 |
+
<</SYS>>
|
22 |
+
|
23 |
+
{{ user_message }} [/INST] """
|
24 |
+
|
25 |
+
LLAMA2_STOPWORD = "</s>"
|
26 |
+
|
27 |
+
MPT_PROMPT_7B = """<|im_start|>system
|
28 |
+
- You are a helpful assistant chatbot trained by MosaicML.
|
29 |
+
- You answer questions.
|
30 |
+
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
31 |
+
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
|
32 |
+
<|im_start|>user
|
33 |
+
{{ user_message }}<|im_end|>
|
34 |
+
<|im_start|>assistant
|
35 |
+
"""
|
36 |
+
|
37 |
+
MPT_LM_PROMPT_7B = """<|im_start|>system
|
38 |
+
- You are a helpful assistant chatbot trained by MosaicML.
|
39 |
+
- You answer questions.
|
40 |
+
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
41 |
+
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
|
42 |
+
<|im_start|>user
|
43 |
+
{{ user_message }}<|im_end|>
|
44 |
+
<|im_start|>assistant
|
45 |
+
"""
|
46 |
+
|
47 |
+
MPT_PROMPT_30B = """<|im_start|>system
|
48 |
+
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.<|im_end|>
|
49 |
+
<|im_start|>user
|
50 |
+
{{ user_message }}<|im_end|>
|
51 |
+
<|im_start|>assistant
|
52 |
+
"""
|
53 |
+
|
54 |
+
MPT_STOPWORD = "<|im_end|>"
|
55 |
+
|
56 |
+
FALCON_PROMPT = """The following is a conversation between a highly knowledgeable and intelligent AI assistant, called Falcon, and a human user, called User. In the following interactions, User and Falcon will converse in natural language, and Falcon will answer User's questions. Falcon was built to be respectful, polite and inclusive. Falcon was built by the Technology Innovation Institute in Abu Dhabi. Falcon will never decline to answer a question, and always attempts to give an answer that User would be satisfied with. It knows a lot, and always tells the truth. The conversation begins.
|
57 |
+
User: {{ user_message }}
|
58 |
+
Falcon: """
|
59 |
+
|
60 |
+
FALCON_STOPWORD = "User:"
|
61 |
+
|
62 |
+
ALFRED_PROMPT = """Alfred is a large language model trained by LightOn. Knowledge cutoff: November 2022. Current date: 31 July, 2023
|
63 |
+
|
64 |
+
User: {{ user_message }}
|
65 |
+
Alfred: """
|
66 |
+
|
67 |
+
ALFRED_STOPWORD = "User:"
|
68 |
+
|
69 |
+
VICUNA_PROMPT = """A chat between a curious user and an artificial intelligence assistant.
|
70 |
+
The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {{ user_message }} ASSISTANT: """
|
71 |
+
|
72 |
+
VICUNA_STOPWORD = ""
|
73 |
+
|
74 |
+
MODELS = {
|
75 |
+
################################################
|
76 |
+
# llama-2 #
|
77 |
+
################################################
|
78 |
+
"llama-2-70b": {
|
79 |
+
"name": "llama-2-70b",
|
80 |
+
"model_name": "NousResearch/llama-2-70b-hf",
|
81 |
+
"model_path": "NousResearch-llama-2-70b-hf",
|
82 |
+
"num_gpus": 4,
|
83 |
+
"batch_size": 2,
|
84 |
+
"is_chat": False,
|
85 |
+
"max_total_tokens": 2048,
|
86 |
+
"max_input_length": 1024,
|
87 |
+
"max_batch_prefill_tokens": 1024,
|
88 |
+
"to_be_quantized": True,
|
89 |
+
"to_be_watermarked": True,
|
90 |
+
"model_size": 70e9,
|
91 |
+
"model_family": "llama-2",
|
92 |
+
},
|
93 |
+
"llama-2-13b": {
|
94 |
+
"name": "llama-2-13b",
|
95 |
+
"model_name": "NousResearch/llama-2-13b-hf",
|
96 |
+
"model_path": "NousResearch-llama-2-13b-hf",
|
97 |
+
"num_gpus": 2,
|
98 |
+
"batch_size": 8,
|
99 |
+
"is_chat": False,
|
100 |
+
"max_total_tokens": 2048,
|
101 |
+
"max_input_length": 1024,
|
102 |
+
"max_batch_prefill_tokens": 1024,
|
103 |
+
"to_be_quantized": True,
|
104 |
+
"to_be_watermarked": True,
|
105 |
+
"model_size": 13e9,
|
106 |
+
"model_family": "llama-2",
|
107 |
+
},
|
108 |
+
"llama-2-7b": {
|
109 |
+
"name": "llama-2-7b",
|
110 |
+
"model_name": "NousResearch/llama-2-7b-hf",
|
111 |
+
"model_path": "NousResearch-llama-2-7b-hf",
|
112 |
+
"num_gpus": 1,
|
113 |
+
"batch_size": 4,
|
114 |
+
"is_chat": False,
|
115 |
+
"max_total_tokens": 2048,
|
116 |
+
"max_input_length": 1024,
|
117 |
+
"max_batch_prefill_tokens": 1024,
|
118 |
+
"to_be_quantized": True,
|
119 |
+
"to_be_watermarked": True,
|
120 |
+
"model_size": 7e9,
|
121 |
+
"model_family": "llama-2",
|
122 |
+
},
|
123 |
+
################################################
|
124 |
+
# llama-2 #
|
125 |
+
################################################
|
126 |
+
"llama-2-70b-chat": {
|
127 |
+
"name": "llama-2-70b-chat",
|
128 |
+
"model_name": "NousResearch/llama-2-70b-chat-hf",
|
129 |
+
"model_path": "NousResearch-llama-2-70b-chat-hf",
|
130 |
+
"num_gpus": 4,
|
131 |
+
"batch_size": 2,
|
132 |
+
"is_chat": True,
|
133 |
+
"prompt": LLAMA2_PROMPT,
|
134 |
+
"stopword": LLAMA2_STOPWORD,
|
135 |
+
"max_total_tokens": 2048,
|
136 |
+
"max_input_length": 1024,
|
137 |
+
"max_batch_prefill_tokens": 1024,
|
138 |
+
"model_size": 70e9,
|
139 |
+
"model_family": "llama-2",
|
140 |
+
},
|
141 |
+
"llama-2-13b-chat": {
|
142 |
+
"name": "llama-2-13b-chat",
|
143 |
+
"model_name": "NousResearch/llama-2-13b-chat-hf",
|
144 |
+
"model_path": "NousResearch-llama-2-13b-chat-hf",
|
145 |
+
"num_gpus": 2,
|
146 |
+
"batch_size": 8,
|
147 |
+
"is_chat": True,
|
148 |
+
"prompt": LLAMA2_PROMPT,
|
149 |
+
"stopword": LLAMA2_STOPWORD,
|
150 |
+
"max_total_tokens": 2048,
|
151 |
+
"max_input_length": 1024,
|
152 |
+
"max_batch_prefill_tokens": 1024,
|
153 |
+
"model_size": 13e9,
|
154 |
+
"model_family": "llama-2",
|
155 |
+
},
|
156 |
+
"llama-2-7b-chat": {
|
157 |
+
"name": "llama-2-7b-chat",
|
158 |
+
"model_name": "NousResearch/llama-2-7b-chat-hf",
|
159 |
+
"model_path": "NousResearch-llama-2-7b-chat-hf",
|
160 |
+
"num_gpus": 1,
|
161 |
+
"batch_size": 4,
|
162 |
+
"is_chat": True,
|
163 |
+
"prompt": LLAMA2_PROMPT,
|
164 |
+
"stopword": LLAMA2_STOPWORD,
|
165 |
+
"max_total_tokens": 2048,
|
166 |
+
"max_input_length": 1024,
|
167 |
+
"max_batch_prefill_tokens": 1024,
|
168 |
+
"model_size": 7e9,
|
169 |
+
"model_family": "llama-2",
|
170 |
+
},
|
171 |
+
################################################
|
172 |
+
# llama-1 #
|
173 |
+
################################################
|
174 |
+
"llama-65b": {
|
175 |
+
"name": "llama-65b",
|
176 |
+
"model_name": "huggyllama/llama-65b",
|
177 |
+
"model_path": "huggyllama-llama-65b",
|
178 |
+
"num_gpus": 4,
|
179 |
+
"batch_size": 2,
|
180 |
+
"is_chat": False,
|
181 |
+
"max_total_tokens": 2048,
|
182 |
+
"max_input_length": 1024,
|
183 |
+
"max_batch_prefill_tokens": 1024,
|
184 |
+
"to_be_quantized": True,
|
185 |
+
"to_be_watermarked": True,
|
186 |
+
"model_size": 65e9,
|
187 |
+
"model_family": "llama-1",
|
188 |
+
},
|
189 |
+
"llama-30b": {
|
190 |
+
"name": "llama-30b",
|
191 |
+
"model_name": "huggyllama/llama-30b",
|
192 |
+
"model_path": "huggyllama-llama-30b",
|
193 |
+
"num_gpus": 2,
|
194 |
+
"batch_size": 2,
|
195 |
+
"is_chat": False,
|
196 |
+
"max_total_tokens": 2048,
|
197 |
+
"max_input_length": 1024,
|
198 |
+
"max_batch_prefill_tokens": 1024,
|
199 |
+
"to_be_quantized": True,
|
200 |
+
"to_be_watermarked": True,
|
201 |
+
"model_size": 30e9,
|
202 |
+
"model_family": "llama-1",
|
203 |
+
},
|
204 |
+
"llama-13b": {
|
205 |
+
"name": "llama-13b",
|
206 |
+
"model_name": "huggyllama/llama-13b",
|
207 |
+
"model_path": "huggyllama-llama-13b",
|
208 |
+
"num_gpus": 2,
|
209 |
+
"batch_size": 8,
|
210 |
+
"is_chat": False,
|
211 |
+
"max_total_tokens": 2048,
|
212 |
+
"max_input_length": 1024,
|
213 |
+
"max_batch_prefill_tokens": 1024,
|
214 |
+
"to_be_quantized": True,
|
215 |
+
"to_be_watermarked": True,
|
216 |
+
"model_size": 13e9,
|
217 |
+
"model_family": "llama-1",
|
218 |
+
},
|
219 |
+
"llama-7b": {
|
220 |
+
"name": "llama-7b",
|
221 |
+
"model_name": "huggyllama/llama-7b",
|
222 |
+
"model_path": "huggyllama-llama-7b",
|
223 |
+
"num_gpus": 1,
|
224 |
+
"batch_size": 4,
|
225 |
+
"is_chat": False,
|
226 |
+
"max_total_tokens": 2048,
|
227 |
+
"max_input_length": 1024,
|
228 |
+
"max_batch_prefill_tokens": 1024,
|
229 |
+
"to_be_quantized": True,
|
230 |
+
"to_be_watermarked": True,
|
231 |
+
"model_size": 7e9,
|
232 |
+
"model_family": "llama-1",
|
233 |
+
},
|
234 |
+
################################################
|
235 |
+
# OPT #
|
236 |
+
################################################
|
237 |
+
"opt-66b": {
|
238 |
+
"name": "opt-66b",
|
239 |
+
"model_name": "facebook/opt-66b",
|
240 |
+
"model_path": "facebook-opt-66b",
|
241 |
+
"num_gpus": 4,
|
242 |
+
"batch_size": 2,
|
243 |
+
"is_chat": False,
|
244 |
+
"max_total_tokens": 1024,
|
245 |
+
"max_input_length": 256,
|
246 |
+
"max_batch_prefill_tokens": 1024,
|
247 |
+
"model_size": 66e9,
|
248 |
+
"model_family": "opt",
|
249 |
+
},
|
250 |
+
"opt-30b": {
|
251 |
+
"name": "opt-30b",
|
252 |
+
"model_name": "facebook/opt-30b",
|
253 |
+
"model_path": "facebook-opt-30b",
|
254 |
+
"num_gpus": 4,
|
255 |
+
"batch_size": 1,
|
256 |
+
"is_chat": False,
|
257 |
+
"no_api": True,
|
258 |
+
"model_size": 30e9,
|
259 |
+
"model_family": "opt",
|
260 |
+
},
|
261 |
+
"opt-13b": {
|
262 |
+
"name": "opt-13b",
|
263 |
+
"model_name": "facebook/opt-13b",
|
264 |
+
"model_path": "facebook-opt-13b",
|
265 |
+
"num_gpus": 2,
|
266 |
+
"batch_size": 1,
|
267 |
+
"is_chat": False,
|
268 |
+
"no_api": True,
|
269 |
+
"model_size": 13e9,
|
270 |
+
"model_family": "opt",
|
271 |
+
},
|
272 |
+
"opt-6.7b": {
|
273 |
+
"name": "opt-6.7b",
|
274 |
+
"model_name": "facebook/opt-6.7b",
|
275 |
+
"model_path": "facebook-opt-6.7b",
|
276 |
+
"num_gpus": 1,
|
277 |
+
"batch_size": 4,
|
278 |
+
"is_chat": False,
|
279 |
+
"no_api": True,
|
280 |
+
"model_size": 6.7e9,
|
281 |
+
"model_family": "opt",
|
282 |
+
},
|
283 |
+
"opt-2.7b": {
|
284 |
+
"name": "opt-2.7b",
|
285 |
+
"model_name": "facebook/opt-2.7b",
|
286 |
+
"model_path": "facebook-opt-2.7b",
|
287 |
+
"num_gpus": 1,
|
288 |
+
"batch_size": 16,
|
289 |
+
"is_chat": False,
|
290 |
+
"max_total_tokens": 1024,
|
291 |
+
"max_input_length": 256,
|
292 |
+
"max_batch_prefill_tokens": 4096,
|
293 |
+
"model_size": 2.7e9,
|
294 |
+
"model_family": "opt",
|
295 |
+
},
|
296 |
+
"opt-1.3b": {
|
297 |
+
"name": "opt-1.3b",
|
298 |
+
"model_name": "facebook/opt-1.3b",
|
299 |
+
"model_path": "facebook-opt-1.3b",
|
300 |
+
"num_gpus": 1,
|
301 |
+
"batch_size": 16,
|
302 |
+
"is_chat": False,
|
303 |
+
"use_flash_attention": True,
|
304 |
+
"max_total_tokens": 1024,
|
305 |
+
"max_input_length": 256,
|
306 |
+
"max_batch_prefill_tokens": 4096,
|
307 |
+
"model_size": 1.3e9,
|
308 |
+
"model_family": "opt",
|
309 |
+
},
|
310 |
+
"opt-350m": {
|
311 |
+
"name": "opt-350m",
|
312 |
+
"model_name": "facebook/opt-350m",
|
313 |
+
"model_path": "facebook-opt-350m",
|
314 |
+
"num_gpus": 1,
|
315 |
+
"batch_size": 16,
|
316 |
+
"is_chat": False,
|
317 |
+
"no_api": True,
|
318 |
+
"model_size": 350e6,
|
319 |
+
"model_family": "opt",
|
320 |
+
},
|
321 |
+
"opt-125m": {
|
322 |
+
"name": "opt-125m",
|
323 |
+
"model_name": "facebook/opt-125m",
|
324 |
+
"model_path": "facebook-opt-125m",
|
325 |
+
"num_gpus": 1,
|
326 |
+
"batch_size": 16,
|
327 |
+
"is_chat": False,
|
328 |
+
"max_total_tokens": 1024,
|
329 |
+
"max_input_length": 256,
|
330 |
+
"max_batch_prefill_tokens": 4096,
|
331 |
+
"model_size": 125e6,
|
332 |
+
"model_family": "opt",
|
333 |
+
},
|
334 |
+
################################################
|
335 |
+
# MPT #
|
336 |
+
################################################
|
337 |
+
"mpt-30b": {
|
338 |
+
"name": "mpt-30b",
|
339 |
+
"model_name": "mosaicml/mpt-30b",
|
340 |
+
"model_path": "mosaicml-mpt-30b",
|
341 |
+
"num_gpus": 2,
|
342 |
+
"batch_size": 2,
|
343 |
+
"is_chat": False,
|
344 |
+
"max_total_tokens": 2048,
|
345 |
+
"max_input_length": 1024,
|
346 |
+
"max_batch_prefill_tokens": 1024,
|
347 |
+
"model_size": 30e9,
|
348 |
+
"model_family": "mpt",
|
349 |
+
},
|
350 |
+
"mpt-7b": {
|
351 |
+
"name": "mpt-7b",
|
352 |
+
"model_name": "mosaicml/mpt-7b",
|
353 |
+
"model_path": "mosaicml-mpt-7b",
|
354 |
+
"num_gpus": 1,
|
355 |
+
"batch_size": 4,
|
356 |
+
"is_chat": False,
|
357 |
+
"max_total_tokens": 2048,
|
358 |
+
"max_input_length": 1024,
|
359 |
+
"max_batch_prefill_tokens": 4096,
|
360 |
+
"model_size": 7e9,
|
361 |
+
"model_family": "mpt",
|
362 |
+
},
|
363 |
+
################################################
|
364 |
+
# MPT-Chat #
|
365 |
+
################################################
|
366 |
+
"mpt-30b-chat": {
|
367 |
+
"name": "mpt-30b-chat",
|
368 |
+
"model_name": "mosaicml/mpt-30b-chat",
|
369 |
+
"model_path": "mosaicml-mpt-30b-chat",
|
370 |
+
"num_gpus": 2,
|
371 |
+
"batch_size": 2,
|
372 |
+
"is_chat": True,
|
373 |
+
"prompt": MPT_PROMPT_30B,
|
374 |
+
"stopword": MPT_STOPWORD,
|
375 |
+
"max_total_tokens": 1024,
|
376 |
+
"max_input_length": 256,
|
377 |
+
"max_batch_prefill_tokens": 4096,
|
378 |
+
"model_size": 30e9,
|
379 |
+
"model_family": "mpt",
|
380 |
+
},
|
381 |
+
"mpt-7b-chat": {
|
382 |
+
"name": "mpt-7b-chat",
|
383 |
+
"model_name": "mosaicml/mpt-7b-chat",
|
384 |
+
"model_path": "mosaicml-mpt-7b-chat",
|
385 |
+
"num_gpus": 1,
|
386 |
+
"batch_size": 4,
|
387 |
+
"is_chat": True,
|
388 |
+
"prompt": MPT_PROMPT_7B,
|
389 |
+
"stopword": MPT_STOPWORD,
|
390 |
+
"max_total_tokens": 2048,
|
391 |
+
"max_input_length": 1024,
|
392 |
+
"max_batch_prefill_tokens": 4096,
|
393 |
+
"model_size": 7e9,
|
394 |
+
"model_family": "mpt",
|
395 |
+
},
|
396 |
+
################################################
|
397 |
+
# OPENLLAMA #
|
398 |
+
################################################
|
399 |
+
"openllama-13b": {
|
400 |
+
"name": "openllama-13b",
|
401 |
+
"model_name": "openlm-research/open_llama_13b",
|
402 |
+
"model_path": "openlm-research-open_llama_13b",
|
403 |
+
"num_gpus": 2,
|
404 |
+
"batch_size": 8,
|
405 |
+
"is_chat": False,
|
406 |
+
"max_total_tokens": 2048,
|
407 |
+
"max_input_length": 1024,
|
408 |
+
"max_batch_prefill_tokens": 4096,
|
409 |
+
"model_size": 13e9,
|
410 |
+
"model_family": "openllama",
|
411 |
+
},
|
412 |
+
"openllama-7b": {
|
413 |
+
"name": "openllama-7b",
|
414 |
+
"model_name": "openlm-research/open_llama_7b",
|
415 |
+
"model_path": "openlm-research-open_llama_7b",
|
416 |
+
"num_gpus": 1,
|
417 |
+
"batch_size": 8,
|
418 |
+
"is_chat": False,
|
419 |
+
"max_total_tokens": 2048,
|
420 |
+
"max_input_length": 1024,
|
421 |
+
"max_batch_prefill_tokens": 4096,
|
422 |
+
"model_size": 7e9,
|
423 |
+
"model_family": "openllama",
|
424 |
+
},
|
425 |
+
"openllama-3b": {
|
426 |
+
"name": "openllama-3b",
|
427 |
+
"model_name": "openlm-research/open_llama_3b",
|
428 |
+
"model_path": "openlm-research-open_llama_3b",
|
429 |
+
"num_gpus": 1,
|
430 |
+
"batch_size": 16,
|
431 |
+
"is_chat": False,
|
432 |
+
"use_flash_attention": False,
|
433 |
+
"max_total_tokens": 2048,
|
434 |
+
"max_input_length": 1024,
|
435 |
+
"max_batch_prefill_tokens": 4096,
|
436 |
+
"model_size": 3e9,
|
437 |
+
"model_family": "openllama",
|
438 |
+
},
|
439 |
+
################################################
|
440 |
+
# OPENLLAMA-2 #
|
441 |
+
################################################
|
442 |
+
# "openllama-2-13b": {
|
443 |
+
# "name": "openllama-2-13b",
|
444 |
+
# "model_name": "openlm-research/open_llama_13b_v2",
|
445 |
+
# "model_path": "openlm-research-open_llama_13b_v2",
|
446 |
+
# "num_gpus": 2,
|
447 |
+
# "batch_size": 1,
|
448 |
+
# "is_chat": False,
|
449 |
+
# },
|
450 |
+
"openllama-2-7b": {
|
451 |
+
"name": "openllama-2-7b",
|
452 |
+
"model_name": "openlm-research/open_llama_7b_v2",
|
453 |
+
"model_path": "openlm-research-open_llama_7b_v2",
|
454 |
+
"num_gpus": 1,
|
455 |
+
"batch_size": 8,
|
456 |
+
"is_chat": False,
|
457 |
+
"max_total_tokens": 2048,
|
458 |
+
"max_input_length": 1024,
|
459 |
+
"max_batch_prefill_tokens": 4096,
|
460 |
+
"model_size": 7e9,
|
461 |
+
"model_family": "openllama-2",
|
462 |
+
},
|
463 |
+
"openllama-2-3b": {
|
464 |
+
"name": "openllama-2-3b",
|
465 |
+
"model_name": "openlm-research/open_llama_3b_v2",
|
466 |
+
"model_path": "openlm-research-open_llama_3b_v2",
|
467 |
+
"num_gpus": 1,
|
468 |
+
"batch_size": 16,
|
469 |
+
"is_chat": False,
|
470 |
+
"use_flash_attention": False,
|
471 |
+
"max_total_tokens": 2048,
|
472 |
+
"max_input_length": 1024,
|
473 |
+
"max_batch_prefill_tokens": 4096,
|
474 |
+
"model_size": 3e9,
|
475 |
+
"model_family": "openllama-2",
|
476 |
+
},
|
477 |
+
################################################
|
478 |
+
# Pythia #
|
479 |
+
################################################
|
480 |
+
"pythia-12b": {
|
481 |
+
"name": "pythia-12b",
|
482 |
+
"model_name": "EleutherAI/pythia-12b",
|
483 |
+
"model_path": "EleutherAI-pythia-12b",
|
484 |
+
"num_gpus": 2,
|
485 |
+
"batch_size": 8,
|
486 |
+
"is_chat": False,
|
487 |
+
"max_total_tokens": 2048,
|
488 |
+
"max_input_length": 1024,
|
489 |
+
"max_batch_prefill_tokens": 4096,
|
490 |
+
"model_size": 12e9,
|
491 |
+
"model_family": "pythia",
|
492 |
+
},
|
493 |
+
"pythia-6.9b": {
|
494 |
+
"name": "pythia-6.9b",
|
495 |
+
"model_name": "EleutherAI/pythia-6.9b",
|
496 |
+
"model_path": "EleutherAI-pythia-6.9b",
|
497 |
+
"num_gpus": 1,
|
498 |
+
"batch_size": 8,
|
499 |
+
"is_chat": False,
|
500 |
+
"max_total_tokens": 2048,
|
501 |
+
"max_input_length": 1024,
|
502 |
+
"max_batch_prefill_tokens": 4096,
|
503 |
+
"model_size": 6.9e9,
|
504 |
+
"model_family": "pythia",
|
505 |
+
},
|
506 |
+
"pythia-2.8b": {
|
507 |
+
"name": "pythia-2.8b",
|
508 |
+
"model_name": "EleutherAI/pythia-2.8b",
|
509 |
+
"model_path": "EleutherAI-pythia-2.8b",
|
510 |
+
"num_gpus": 1,
|
511 |
+
"batch_size": 16,
|
512 |
+
"is_chat": False,
|
513 |
+
"max_total_tokens": 2048,
|
514 |
+
"max_input_length": 1024,
|
515 |
+
"max_batch_prefill_tokens": 4096,
|
516 |
+
"model_size": 2.8e9,
|
517 |
+
"model_family": "pythia",
|
518 |
+
},
|
519 |
+
"pythia-1.4b": {
|
520 |
+
"name": "pythia-1.4b",
|
521 |
+
"model_name": "EleutherAI/pythia-1.4b",
|
522 |
+
"model_path": "EleutherAI-pythia-1.4b",
|
523 |
+
"num_gpus": 1,
|
524 |
+
"batch_size": 16,
|
525 |
+
"is_chat": False,
|
526 |
+
"max_total_tokens": 2048,
|
527 |
+
"max_input_length": 256,
|
528 |
+
"max_batch_prefill_tokens": 4096,
|
529 |
+
"model_size": 1.4e9,
|
530 |
+
"model_family": "pythia",
|
531 |
+
},
|
532 |
+
"pythia-1b": {
|
533 |
+
"name": "pythia-1b",
|
534 |
+
"model_name": "EleutherAI/pythia-1b",
|
535 |
+
"model_path": "EleutherAI-pythia-1b",
|
536 |
+
"num_gpus": 1,
|
537 |
+
"batch_size": 1,
|
538 |
+
"is_chat": False,
|
539 |
+
"use_flash_attention": False,
|
540 |
+
"max_total_tokens": 1024,
|
541 |
+
"max_input_length": 256,
|
542 |
+
"max_batch_prefill_tokens": 4096,
|
543 |
+
"model_size": 1e9,
|
544 |
+
"model_family": "pythia",
|
545 |
+
},
|
546 |
+
"pythia-410m": {
|
547 |
+
"name": "pythia-410m",
|
548 |
+
"model_name": "EleutherAI/pythia-410m",
|
549 |
+
"model_path": "EleutherAI-pythia-410m",
|
550 |
+
"num_gpus": 1,
|
551 |
+
"batch_size": 16,
|
552 |
+
"is_chat": False,
|
553 |
+
"max_total_tokens": 2048,
|
554 |
+
"max_input_length": 1024,
|
555 |
+
"max_batch_prefill_tokens": 4096,
|
556 |
+
"model_size": 410e6,
|
557 |
+
"model_family": "pythia",
|
558 |
+
},
|
559 |
+
"pythia-160m": {
|
560 |
+
"name": "pythia-160m",
|
561 |
+
"model_name": "EleutherAI/pythia-160m",
|
562 |
+
"model_path": "EleutherAI-pythia-160m",
|
563 |
+
"num_gpus": 1,
|
564 |
+
"batch_size": 16,
|
565 |
+
"is_chat": False,
|
566 |
+
"max_total_tokens": 2048,
|
567 |
+
"max_input_length": 1024,
|
568 |
+
"max_batch_prefill_tokens": 4096,
|
569 |
+
"model_size": 160e6,
|
570 |
+
"model_family": "pythia",
|
571 |
+
},
|
572 |
+
"pythia-70m": {
|
573 |
+
"name": "pythia-70m",
|
574 |
+
"model_name": "EleutherAI/pythia-70m",
|
575 |
+
"model_path": "EleutherAI-pythia-70m",
|
576 |
+
"num_gpus": 1,
|
577 |
+
"batch_size": 16,
|
578 |
+
"is_chat": False,
|
579 |
+
"max_total_tokens": 2048,
|
580 |
+
"max_input_length": 1024,
|
581 |
+
"max_batch_prefill_tokens": 4096,
|
582 |
+
"model_size": 70e6,
|
583 |
+
"model_family": "pythia",
|
584 |
+
},
|
585 |
+
################################################
|
586 |
+
# Pythia-deduped #
|
587 |
+
################################################
|
588 |
+
"pythia-12b-deduped": {
|
589 |
+
"name": "pythia-12b-deduped",
|
590 |
+
"model_name": "EleutherAI/pythia-12b-deduped",
|
591 |
+
"model_path": "EleutherAI-pythia-12b-deduped",
|
592 |
+
"num_gpus": 2,
|
593 |
+
"batch_size": 8,
|
594 |
+
"is_chat": False,
|
595 |
+
"max_total_tokens": 2048,
|
596 |
+
"max_input_length": 1024,
|
597 |
+
"max_batch_prefill_tokens": 4096,
|
598 |
+
"model_family": "pythia-deduped",
|
599 |
+
"model_size": 12e9,
|
600 |
+
},
|
601 |
+
"pythia-6.9b-deduped": {
|
602 |
+
"name": "pythia-6.9b-deduped",
|
603 |
+
"model_name": "EleutherAI/pythia-6.9b-deduped",
|
604 |
+
"model_path": "EleutherAI-pythia-6.9b-deduped",
|
605 |
+
"num_gpus": 1,
|
606 |
+
"batch_size": 8,
|
607 |
+
"is_chat": False,
|
608 |
+
"max_total_tokens": 2048,
|
609 |
+
"max_input_length": 1024,
|
610 |
+
"max_batch_prefill_tokens": 4096,
|
611 |
+
"model_family": "pythia-deduped",
|
612 |
+
"model_size": 6.9e9,
|
613 |
+
},
|
614 |
+
"pythia-2.8b-deduped": {
|
615 |
+
"name": "pythia-2.8b-deduped",
|
616 |
+
"model_name": "EleutherAI/pythia-2.8b-deduped",
|
617 |
+
"model_path": "EleutherAI-pythia-2.8b-deduped",
|
618 |
+
"num_gpus": 1,
|
619 |
+
"batch_size": 16,
|
620 |
+
"is_chat": False,
|
621 |
+
"max_total_tokens": 2048,
|
622 |
+
"max_input_length": 1024,
|
623 |
+
"max_batch_prefill_tokens": 4096,
|
624 |
+
"model_family": "pythia-deduped",
|
625 |
+
"model_size": 2.8e9,
|
626 |
+
},
|
627 |
+
"pythia-1.4b-deduped": {
|
628 |
+
"name": "pythia-1.4b-deduped",
|
629 |
+
"model_name": "EleutherAI/pythia-1.4b-deduped",
|
630 |
+
"model_path": "EleutherAI-pythia-1.4b-deduped",
|
631 |
+
"num_gpus": 1,
|
632 |
+
"batch_size": 16,
|
633 |
+
"is_chat": False,
|
634 |
+
"max_total_tokens": 2048,
|
635 |
+
"max_input_length": 1024,
|
636 |
+
"max_batch_prefill_tokens": 4096,
|
637 |
+
"model_family": "pythia-deduped",
|
638 |
+
"model_size": 1.4e9,
|
639 |
+
},
|
640 |
+
"pythia-1b-deduped": {
|
641 |
+
"name": "pythia-1b-deduped",
|
642 |
+
"model_name": "EleutherAI/pythia-1b-deduped",
|
643 |
+
"model_path": "EleutherAI-pythia-1b-deduped",
|
644 |
+
"num_gpus": 1,
|
645 |
+
"batch_size": 16,
|
646 |
+
"is_chat": False,
|
647 |
+
"use_flash_attention": False,
|
648 |
+
"max_total_tokens": 2048,
|
649 |
+
"max_input_length": 256,
|
650 |
+
"max_batch_prefill_tokens": 4096,
|
651 |
+
"model_family": "pythia-deduped",
|
652 |
+
"model_size": 1e9,
|
653 |
+
},
|
654 |
+
"pythia-410m-deduped": {
|
655 |
+
"name": "pythia-410m-deduped",
|
656 |
+
"model_name": "EleutherAI/pythia-410m-deduped",
|
657 |
+
"model_path": "EleutherAI-pythia-410m-deduped",
|
658 |
+
"num_gpus": 1,
|
659 |
+
"batch_size": 16,
|
660 |
+
"is_chat": False,
|
661 |
+
"max_total_tokens": 2048,
|
662 |
+
"max_input_length": 1024,
|
663 |
+
"max_batch_prefill_tokens": 4096,
|
664 |
+
"model_family": "pythia-deduped",
|
665 |
+
"model_size": 410e6,
|
666 |
+
},
|
667 |
+
"pythia-160m-deduped": {
|
668 |
+
"name": "pythia-160m-deduped",
|
669 |
+
"model_name": "EleutherAI/pythia-160m-deduped",
|
670 |
+
"model_path": "EleutherAI-pythia-160m-deduped",
|
671 |
+
"num_gpus": 1,
|
672 |
+
"batch_size": 16,
|
673 |
+
"is_chat": False,
|
674 |
+
"max_total_tokens": 2048,
|
675 |
+
"max_input_length": 1024,
|
676 |
+
"max_batch_prefill_tokens": 4096,
|
677 |
+
"model_family": "pythia-deduped",
|
678 |
+
"model_size": 160e6,
|
679 |
+
},
|
680 |
+
"pythia-70m-deduped": {
|
681 |
+
"name": "pythia-70m-deduped",
|
682 |
+
"model_name": "EleutherAI/pythia-70m-deduped",
|
683 |
+
"model_path": "EleutherAI-pythia-70m-deduped",
|
684 |
+
"num_gpus": 1,
|
685 |
+
"batch_size": 16,
|
686 |
+
"is_chat": False,
|
687 |
+
"max_total_tokens": 2048,
|
688 |
+
"max_input_length": 1024,
|
689 |
+
"max_batch_prefill_tokens": 4096,
|
690 |
+
"model_family": "pythia-deduped",
|
691 |
+
"model_size": 70e6,
|
692 |
+
},
|
693 |
+
################################################
|
694 |
+
# GPT2 #
|
695 |
+
################################################
|
696 |
+
"gpt2-xl": {
|
697 |
+
"name": "gpt2-xl",
|
698 |
+
"model_name": "gpt2-xl",
|
699 |
+
"model_path": "gpt2-xl",
|
700 |
+
"num_gpus": 1,
|
701 |
+
"batch_size": 16,
|
702 |
+
"is_chat": False,
|
703 |
+
"max_total_tokens": 1024,
|
704 |
+
"max_input_length": 256,
|
705 |
+
"max_batch_prefill_tokens": 4096,
|
706 |
+
"model_size": 1.5e9,
|
707 |
+
"model_family": "gpt2",
|
708 |
+
},
|
709 |
+
"gpt2-large": {
|
710 |
+
"name": "gpt2-large",
|
711 |
+
"model_name": "gpt2-large",
|
712 |
+
"model_path": "gpt2-large",
|
713 |
+
"num_gpus": 1,
|
714 |
+
"batch_size": 16,
|
715 |
+
"is_chat": False,
|
716 |
+
"max_total_tokens": 1024,
|
717 |
+
"max_input_length": 256,
|
718 |
+
"max_batch_prefill_tokens": 4096,
|
719 |
+
"model_size": 774e6,
|
720 |
+
"model_family": "gpt2",
|
721 |
+
},
|
722 |
+
"gpt2-medium": {
|
723 |
+
"name": "gpt2-medium",
|
724 |
+
"model_name": "gpt2-medium",
|
725 |
+
"model_path": "gpt2-medium",
|
726 |
+
"num_gpus": 1,
|
727 |
+
"batch_size": 16,
|
728 |
+
"is_chat": False,
|
729 |
+
"max_total_tokens": 2048,
|
730 |
+
"max_input_length": 1024,
|
731 |
+
"max_batch_prefill_tokens": 4096,
|
732 |
+
"model_size": 355e6,
|
733 |
+
"model_family": "gpt2",
|
734 |
+
},
|
735 |
+
"gpt2": {
|
736 |
+
"name": "gpt2",
|
737 |
+
"model_name": "gpt2",
|
738 |
+
"model_path": "gpt2",
|
739 |
+
"num_gpus": 1,
|
740 |
+
"batch_size": 16,
|
741 |
+
"is_chat": False,
|
742 |
+
"max_total_tokens": 2048,
|
743 |
+
"max_input_length": 1024,
|
744 |
+
"max_batch_prefill_tokens": 4096,
|
745 |
+
"model_size": 124e6,
|
746 |
+
"model_family": "gpt2",
|
747 |
+
},
|
748 |
+
################################################
|
749 |
+
# CEREBRAS #
|
750 |
+
################################################
|
751 |
+
"cerebras-gpt-13b": { # add 2 gpus but sharded equals to false
|
752 |
+
"name": "cerebras-gpt-13b",
|
753 |
+
"model_name": "cerebras/Cerebras-GPT-13B",
|
754 |
+
"model_path": "cerebras-Cerebras-GPT-13B",
|
755 |
+
"num_gpus": 1,
|
756 |
+
"batch_size": 8,
|
757 |
+
"is_chat": False,
|
758 |
+
"max_total_tokens": 2048,
|
759 |
+
"max_input_length": 1024,
|
760 |
+
"max_batch_prefill_tokens": 4096,
|
761 |
+
"model_family": "cerebras",
|
762 |
+
"model_size": 13e9,
|
763 |
+
},
|
764 |
+
"cerebras-gpt-6.7b": {
|
765 |
+
"name": "cerebras-gpt-6.7b",
|
766 |
+
"model_name": "cerebras/Cerebras-GPT-6.7B",
|
767 |
+
"model_path": "cerebras-Cerebras-GPT-6.7B",
|
768 |
+
"num_gpus": 1,
|
769 |
+
"batch_size": 8,
|
770 |
+
"is_chat": False,
|
771 |
+
"max_total_tokens": 1024,
|
772 |
+
"max_input_length": 256,
|
773 |
+
"max_batch_prefill_tokens": 4096,
|
774 |
+
"model_family": "cerebras",
|
775 |
+
"model_size": 6.7e9,
|
776 |
+
},
|
777 |
+
"cerebras-gpt-2.7b": {
|
778 |
+
"name": "cerebras-gpt-2.7b",
|
779 |
+
"model_name": "cerebras/Cerebras-GPT-2.7B",
|
780 |
+
"model_path": "cerebras-Cerebras-GPT-2.7B",
|
781 |
+
"num_gpus": 1,
|
782 |
+
"batch_size": 1,
|
783 |
+
"is_chat": False,
|
784 |
+
"max_total_tokens": 2048,
|
785 |
+
"max_input_length": 1024,
|
786 |
+
"max_batch_prefill_tokens": 4096,
|
787 |
+
"model_family": "cerebras",
|
788 |
+
"model_size": 2.7e9,
|
789 |
+
},
|
790 |
+
"cerebras-gpt-1.3b": {
|
791 |
+
"name": "cerebras-gpt-1.3b",
|
792 |
+
"model_name": "cerebras/Cerebras-GPT-1.3B",
|
793 |
+
"model_path": "cerebras-Cerebras-GPT-1.3B",
|
794 |
+
"num_gpus": 1,
|
795 |
+
"batch_size": 1,
|
796 |
+
"is_chat": False,
|
797 |
+
"max_total_tokens": 1024,
|
798 |
+
"max_input_length": 256,
|
799 |
+
"max_batch_prefill_tokens": 4096,
|
800 |
+
"model_family": "cerebras",
|
801 |
+
"model_size": 1.3e9,
|
802 |
+
},
|
803 |
+
"cerebras-gpt-256m": {
|
804 |
+
"name": "cerebras-gpt-256m",
|
805 |
+
"model_name": "cerebras/Cerebras-GPT-256M",
|
806 |
+
"model_path": "cerebras-Cerebras-GPT-256M",
|
807 |
+
"num_gpus": 1,
|
808 |
+
"batch_size": 16,
|
809 |
+
"is_chat": False,
|
810 |
+
"max_total_tokens": 2048,
|
811 |
+
"max_input_length": 1024,
|
812 |
+
"max_batch_prefill_tokens": 4096,
|
813 |
+
"model_family": "cerebras",
|
814 |
+
"model_size": 256e6,
|
815 |
+
},
|
816 |
+
"cerebras-gpt-111m": {
|
817 |
+
"name": "cerebras-gpt-111m",
|
818 |
+
"model_name": "cerebras/Cerebras-GPT-111M",
|
819 |
+
"model_path": "cerebras-Cerebras-GPT-111M",
|
820 |
+
"num_gpus": 1,
|
821 |
+
"batch_size": 16,
|
822 |
+
"is_chat": False,
|
823 |
+
"max_total_tokens": 2048,
|
824 |
+
"max_input_length": 1024,
|
825 |
+
"max_batch_prefill_tokens": 4096,
|
826 |
+
"model_family": "cerebras",
|
827 |
+
"model_size": 111e6,
|
828 |
+
},
|
829 |
+
################################################
|
830 |
+
# Bloom #
|
831 |
+
################################################
|
832 |
+
"bloom-7.1b": {
|
833 |
+
"name": "bloom-7.1b",
|
834 |
+
"model_name": "bigscience/bloom-7b1",
|
835 |
+
"model_path": "bigscience-bloom-7b1",
|
836 |
+
"num_gpus": 1,
|
837 |
+
"batch_size": 8,
|
838 |
+
"is_chat": False,
|
839 |
+
"max_total_tokens": 1024,
|
840 |
+
"max_input_length": 256,
|
841 |
+
"max_batch_prefill_tokens": 4096,
|
842 |
+
"model_size": 7.1e9,
|
843 |
+
"model_family": "bloom",
|
844 |
+
},
|
845 |
+
"bloom-3b": {
|
846 |
+
"name": "bloom-3b",
|
847 |
+
"model_name": "bigscience/bloom-3b",
|
848 |
+
"model_path": "bigscience-bloom-3b",
|
849 |
+
"num_gpus": 1,
|
850 |
+
"batch_size": 16,
|
851 |
+
"is_chat": False,
|
852 |
+
"max_total_tokens": 2048,
|
853 |
+
"max_input_length": 1024,
|
854 |
+
"max_batch_prefill_tokens": 4096,
|
855 |
+
"model_size": 3e9,
|
856 |
+
"model_family": "bloom",
|
857 |
+
},
|
858 |
+
"bloom-1.7b": {
|
859 |
+
"name": "bloom-1.7b",
|
860 |
+
"model_name": "bigscience/bloom-1b7",
|
861 |
+
"model_path": "bigscience-bloom-1b7",
|
862 |
+
"num_gpus": 1,
|
863 |
+
"batch_size": 16,
|
864 |
+
"is_chat": False,
|
865 |
+
"max_total_tokens": 1024,
|
866 |
+
"max_input_length": 256,
|
867 |
+
"max_batch_prefill_tokens": 4096,
|
868 |
+
"model_size": 1.7e9,
|
869 |
+
"model_family": "bloom",
|
870 |
+
},
|
871 |
+
"bloom-1.1b": {
|
872 |
+
"name": "bloom-1.1b",
|
873 |
+
"model_name": "bigscience/bloom-1b1",
|
874 |
+
"model_path": "bigscience-bloom-1b1",
|
875 |
+
"num_gpus": 1,
|
876 |
+
"batch_size": 16,
|
877 |
+
"is_chat": False,
|
878 |
+
"max_total_tokens": 2048,
|
879 |
+
"max_input_length": 1024,
|
880 |
+
"max_batch_prefill_tokens": 4096,
|
881 |
+
"model_size": 1.1e9,
|
882 |
+
"model_family": "bloom",
|
883 |
+
},
|
884 |
+
"bloom-560m": {
|
885 |
+
"name": "bloom-560m",
|
886 |
+
"model_name": "bigscience/bloom-560m",
|
887 |
+
"model_path": "bigscience-bloom-560m",
|
888 |
+
"num_gpus": 1,
|
889 |
+
"batch_size": 16,
|
890 |
+
"is_chat": False,
|
891 |
+
"max_total_tokens": 1024,
|
892 |
+
"max_input_length": 256,
|
893 |
+
"max_batch_prefill_tokens": 4096,
|
894 |
+
"model_size": 560e6,
|
895 |
+
"model_family": "bloom",
|
896 |
+
},
|
897 |
+
################################################
|
898 |
+
# Falcon #
|
899 |
+
################################################
|
900 |
+
"falcon-40b": {
|
901 |
+
"name": "falcon-40b",
|
902 |
+
"model_name": "tiiuae/falcon-40b",
|
903 |
+
"model_path": "tiiuae-falcon-40b",
|
904 |
+
"num_gpus": 4,
|
905 |
+
"batch_size": 4,
|
906 |
+
"is_chat": False,
|
907 |
+
"max_total_tokens": 2048,
|
908 |
+
"max_input_length": 1024,
|
909 |
+
"max_batch_prefill_tokens": 4096,
|
910 |
+
"model_size": 40e9,
|
911 |
+
"model_family": "falcon",
|
912 |
+
},
|
913 |
+
"falcon-7b": {
|
914 |
+
"name": "falcon-7b",
|
915 |
+
"model_name": "tiiuae/falcon-7b",
|
916 |
+
"model_path": "tiiuae-falcon-7b",
|
917 |
+
"num_gpus": 1,
|
918 |
+
"batch_size": 8,
|
919 |
+
"is_chat": False,
|
920 |
+
"max_total_tokens": 2048,
|
921 |
+
"max_input_length": 1024,
|
922 |
+
"max_batch_prefill_tokens": 4096,
|
923 |
+
"model_size": 7e9,
|
924 |
+
"model_family": "falcon",
|
925 |
+
},
|
926 |
+
################################################
|
927 |
+
# Falcon-chat #
|
928 |
+
################################################
|
929 |
+
"falcon-40b-instruct": {
|
930 |
+
"name": "falcon-40b-instruct",
|
931 |
+
"model_name": "tiiuae/falcon-40b-instruct",
|
932 |
+
"model_path": "tiiuae-falcon-40b-instruct",
|
933 |
+
"num_gpus": 4,
|
934 |
+
"batch_size": 4,
|
935 |
+
"is_chat": True,
|
936 |
+
"prompt": FALCON_PROMPT,
|
937 |
+
"stopword": FALCON_STOPWORD,
|
938 |
+
"max_total_tokens": 2048,
|
939 |
+
"max_input_length": 1024,
|
940 |
+
"max_batch_prefill_tokens": 4096,
|
941 |
+
"model_family": "falcon",
|
942 |
+
"model_size": 40e9,
|
943 |
+
},
|
944 |
+
"falcon-7b-instruct": {
|
945 |
+
"name": "falcon-7b-instruct",
|
946 |
+
"model_name": "tiiuae/falcon-7b-instruct",
|
947 |
+
"model_path": "tiiuae-falcon-7b-instruct",
|
948 |
+
"num_gpus": 1,
|
949 |
+
"batch_size": 5,
|
950 |
+
"is_chat": True,
|
951 |
+
"prompt": FALCON_PROMPT,
|
952 |
+
"stopword": FALCON_STOPWORD,
|
953 |
+
"max_total_tokens": 2048,
|
954 |
+
"max_input_length": 1024,
|
955 |
+
"max_batch_prefill_tokens": 4096,
|
956 |
+
"model_family": "falcon",
|
957 |
+
"model_size": 7e9,
|
958 |
+
},
|
959 |
+
"alfred-40b-0723": {
|
960 |
+
"name": "alfred-40b-0723",
|
961 |
+
"model_name": "lightonai/alfred-40b-0723",
|
962 |
+
"model_path": "lightonai-alfred-40b-0723",
|
963 |
+
"num_gpus": 4,
|
964 |
+
"batch_size": 4,
|
965 |
+
"is_chat": True,
|
966 |
+
"prompt": ALFRED_PROMPT,
|
967 |
+
"stopword": ALFRED_STOPWORD,
|
968 |
+
"max_total_tokens": 2048,
|
969 |
+
"max_input_length": 1024,
|
970 |
+
"max_batch_prefill_tokens": 4096,
|
971 |
+
"model_family": "falcon",
|
972 |
+
"model_size": 40e9,
|
973 |
+
},
|
974 |
+
################################################
|
975 |
+
# Vicuna v1.3 #
|
976 |
+
################################################
|
977 |
+
"vicuna-33b-v1.3": {
|
978 |
+
"name": "vicuna-33b-v1.3",
|
979 |
+
"model_name": "lmsys/vicuna-33b-v1.3",
|
980 |
+
"model_path": "lmsys-vicuna-33b-v1.3",
|
981 |
+
"num_gpus": 2,
|
982 |
+
"batch_size": 2,
|
983 |
+
"is_chat": True,
|
984 |
+
"prompt": VICUNA_PROMPT,
|
985 |
+
"stopword": VICUNA_STOPWORD,
|
986 |
+
"max_total_tokens": 2048,
|
987 |
+
"max_input_length": 1024,
|
988 |
+
"max_batch_prefill_tokens": 4096,
|
989 |
+
"model_family": "vicuna",
|
990 |
+
"model_size": 33e9,
|
991 |
+
},
|
992 |
+
"vicuna-13b-v1.3": {
|
993 |
+
"name": "vicuna-13b-v1.3",
|
994 |
+
"model_name": "lmsys/vicuna-13b-v1.3",
|
995 |
+
"model_path": "lmsys-vicuna-13b-v1.3",
|
996 |
+
"num_gpus": 2,
|
997 |
+
"batch_size": 8,
|
998 |
+
"is_chat": True,
|
999 |
+
"prompt": VICUNA_PROMPT,
|
1000 |
+
"stopword": VICUNA_STOPWORD,
|
1001 |
+
"max_total_tokens": 2048,
|
1002 |
+
"max_input_length": 1024,
|
1003 |
+
"max_batch_prefill_tokens": 4096,
|
1004 |
+
"model_family": "vicuna",
|
1005 |
+
"model_size": 13e9,
|
1006 |
+
},
|
1007 |
+
"vicuna-7b-v1.3": {
|
1008 |
+
"name": "vicuna-7b-v1.3",
|
1009 |
+
"model_name": "lmsys/vicuna-7b-v1.3",
|
1010 |
+
"model_path": "lmsys-vicuna-7b-v1.3",
|
1011 |
+
"num_gpus": 1,
|
1012 |
+
"batch_size": 4,
|
1013 |
+
"is_chat": True,
|
1014 |
+
"prompt": VICUNA_PROMPT,
|
1015 |
+
"stopword": VICUNA_STOPWORD,
|
1016 |
+
"max_total_tokens": 2048,
|
1017 |
+
"max_input_length": 1024,
|
1018 |
+
"max_batch_prefill_tokens": 4096,
|
1019 |
+
"model_family": "vicuna",
|
1020 |
+
"model_size": 7e9,
|
1021 |
+
},
|
1022 |
+
}
|
1023 |
+
|
1024 |
+
|
1025 |
+
MODEL_FAMILY_PRETRAINING_DATASETS = {
|
1026 |
+
"llama-2": ["UNK-commoncrawl"],
|
1027 |
+
"llama-1": [
|
1028 |
+
"llama",
|
1029 |
+
"c4",
|
1030 |
+
"github",
|
1031 |
+
"wikipedia",
|
1032 |
+
"books3",
|
1033 |
+
"gutenberg",
|
1034 |
+
"arxiv",
|
1035 |
+
"stackexchange",
|
1036 |
+
],
|
1037 |
+
"openllama": [
|
1038 |
+
"redpajama",
|
1039 |
+
"c4",
|
1040 |
+
"github",
|
1041 |
+
"wikipedia",
|
1042 |
+
"books3",
|
1043 |
+
"gutenberg",
|
1044 |
+
"arxiv",
|
1045 |
+
"stackexchange",
|
1046 |
+
],
|
1047 |
+
"openllama-2": [
|
1048 |
+
"refinedweb",
|
1049 |
+
"github",
|
1050 |
+
"wikipedia",
|
1051 |
+
"books3",
|
1052 |
+
"gutenberg",
|
1053 |
+
"arxiv",
|
1054 |
+
"stackexchange",
|
1055 |
+
],
|
1056 |
+
"pythia": [
|
1057 |
+
"thepile",
|
1058 |
+
"pubmed",
|
1059 |
+
"books3",
|
1060 |
+
"arxiv",
|
1061 |
+
"github",
|
1062 |
+
"openwebtext2",
|
1063 |
+
"freelaw",
|
1064 |
+
"wikipedia",
|
1065 |
+
"stackexchange",
|
1066 |
+
"uspto",
|
1067 |
+
"gutenberg",
|
1068 |
+
"opensubtitles",
|
1069 |
+
"mathematics",
|
1070 |
+
"bookcorpus2",
|
1071 |
+
"ubuntuIRC",
|
1072 |
+
"europarl",
|
1073 |
+
"philpapers",
|
1074 |
+
"nih-grants" "hackernews",
|
1075 |
+
"enron",
|
1076 |
+
],
|
1077 |
+
"gpt2": ["openwebtext"],
|
1078 |
+
"cerebras": [
|
1079 |
+
"thepile",
|
1080 |
+
"pubmed",
|
1081 |
+
"books3",
|
1082 |
+
"arxiv",
|
1083 |
+
"github",
|
1084 |
+
"openwebtext2",
|
1085 |
+
"freelaw",
|
1086 |
+
"wikipedia",
|
1087 |
+
"stackexchange",
|
1088 |
+
"uspto",
|
1089 |
+
"gutenberg",
|
1090 |
+
"opensubtitles",
|
1091 |
+
"mathematics",
|
1092 |
+
"bookcorpus2",
|
1093 |
+
"ubuntuIRC",
|
1094 |
+
"europarl",
|
1095 |
+
"philpapers",
|
1096 |
+
"nih-grants" "hackernews",
|
1097 |
+
"enron",
|
1098 |
+
],
|
1099 |
+
"bloom": [
|
1100 |
+
"oscar",
|
1101 |
+
"github",
|
1102 |
+
"commoncrawl-bloom",
|
1103 |
+
],
|
1104 |
+
"falcon": [
|
1105 |
+
"refinedweb",
|
1106 |
+
"pubmed",
|
1107 |
+
"books3",
|
1108 |
+
"arxiv",
|
1109 |
+
"github",
|
1110 |
+
"openwebtext2",
|
1111 |
+
"freelaw",
|
1112 |
+
"wikipedia",
|
1113 |
+
"stackexchange",
|
1114 |
+
"uspto",
|
1115 |
+
"gutenberg",
|
1116 |
+
"opensubtitles",
|
1117 |
+
"mathematics",
|
1118 |
+
"bookcorpus2",
|
1119 |
+
"ubuntuIRC",
|
1120 |
+
"europarl",
|
1121 |
+
"philpapers",
|
1122 |
+
"nih-grants" "hackernews",
|
1123 |
+
"enron",
|
1124 |
+
],
|
1125 |
+
"mpt": [
|
1126 |
+
"c4",
|
1127 |
+
"mc4",
|
1128 |
+
"redpajama",
|
1129 |
+
"github",
|
1130 |
+
"wikipedia",
|
1131 |
+
"books3",
|
1132 |
+
"gutenberg",
|
1133 |
+
"arxiv",
|
1134 |
+
"stackexchange",
|
1135 |
+
],
|
1136 |
+
"opt": [
|
1137 |
+
"cc-news",
|
1138 |
+
"cc-stories",
|
1139 |
+
"thepile",
|
1140 |
+
"reddit" "pubmed",
|
1141 |
+
"books3",
|
1142 |
+
"github",
|
1143 |
+
"openwebtext2",
|
1144 |
+
"wikipedia",
|
1145 |
+
"uspto",
|
1146 |
+
"gutenberg",
|
1147 |
+
"opensubtitles",
|
1148 |
+
"mathematics",
|
1149 |
+
"bookcorpus2",
|
1150 |
+
"hackernews",
|
1151 |
+
],
|
1152 |
+
}
|
1153 |
+
|
1154 |
+
|
1155 |
+
if __name__ == "__main__":
|
1156 |
+
print(len(MODELS))
|
1157 |
+
print("\n".join(MODELS.keys()))
|
visualize_utils.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def hex_to_rgb(value):
|
5 |
+
"""
|
6 |
+
Calculates rgb values from a hex color code.
|
7 |
+
|
8 |
+
:param (string) value: Hex color string
|
9 |
+
|
10 |
+
:rtype (tuple) (r_value, g_value, b_value): tuple of rgb values
|
11 |
+
"""
|
12 |
+
value = value.lstrip("#")
|
13 |
+
hex_total_length = len(value)
|
14 |
+
rgb_section_length = hex_total_length // 3
|
15 |
+
return tuple(
|
16 |
+
int(value[i : i + rgb_section_length], 16)
|
17 |
+
for i in range(0, hex_total_length, rgb_section_length)
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
viridis = [
|
22 |
+
[0, "#440154"],
|
23 |
+
[0.06274509803921569, "#48186a"],
|
24 |
+
[0.12549019607843137, "#472d7b"],
|
25 |
+
[0.18823529411764706, "#424086"],
|
26 |
+
[0.25098039215686274, "#3b528b"],
|
27 |
+
[0.3137254901960784, "#33638d"],
|
28 |
+
[0.3764705882352941, "#2c728e"],
|
29 |
+
[0.4392156862745098, "#26828e"],
|
30 |
+
[0.5019607843137255, "#21918c"],
|
31 |
+
[0.5647058823529412, "#1fa088"],
|
32 |
+
[0.6274509803921569, "#28ae80"],
|
33 |
+
[0.6901960784313725, "#3fbc73"],
|
34 |
+
[0.7529411764705882, "#5ec962"],
|
35 |
+
[0.8156862745098039, "#84d44b"],
|
36 |
+
[0.8784313725490196, "#addc30"],
|
37 |
+
[0.9411764705882353, "#d8e219"],
|
38 |
+
[1, "#fde725"],
|
39 |
+
]
|
40 |
+
# Define the power parameter for the transformation
|
41 |
+
power = 0.23 # You can adjust this value as needed
|
42 |
+
|
43 |
+
# Apply the power transformation to the values in the colorscale
|
44 |
+
for i in range(len(viridis)):
|
45 |
+
viridis[i][0] = np.power(viridis[i][0], power)
|
46 |
+
|
47 |
+
# Normalize the transformed values to [0, 1]
|
48 |
+
max_value = max(v[0] for v in viridis)
|
49 |
+
for i in range(len(viridis)):
|
50 |
+
viridis[i][0] /= max_value
|
51 |
+
|
52 |
+
# Sort the colorscale by the normalized values
|
53 |
+
viridis.sort(key=lambda x: x[0])
|
54 |
+
viridis_rgb = [[x[0], "rgb" + str(hex_to_rgb(x[1]))] for x in viridis]
|
55 |
+
|
56 |
+
# reverse the colorscale
|
57 |
+
viridis_rgb = [[x[0], y[1]] for x, y in zip(viridis_rgb, viridis_rgb[::-1])]
|