Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import transformers | |
from peft import PeftModel | |
from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: F402 | |
BASE_MODEL = os.environ.get("BASE_MODEL", None) | |
assert ( | |
BASE_MODEL | |
), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=huggyllama/llama-7b`" # noqa: E501 | |
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL) | |
base_model = LlamaForCausalLM.from_pretrained( | |
BASE_MODEL, | |
load_in_8bit=False, | |
torch_dtype=torch.float16, | |
device_map={"": "cpu"}, | |
) | |
first_weight = base_model.model.layers[0].self_attn.q_proj.weight | |
first_weight_old = first_weight.clone() | |
lora_model = PeftModel.from_pretrained( | |
base_model, | |
"../outputs/lora-llama-clm-e2", | |
device_map={"": "cpu"}, | |
torch_dtype=torch.float16, | |
) | |
lora_weight = lora_model.base_model.model.model.layers[0].self_attn.q_proj.weight | |
assert torch.allclose(first_weight_old, first_weight) | |
# merge weights - new merging method from peft | |
lora_model = lora_model.merge_and_unload() | |
lora_model.train(False) | |
# did we do anything? | |
assert not torch.allclose(first_weight_old, first_weight) | |
lora_model_sd = lora_model.state_dict() | |
deloreanized_sd = { | |
k.replace("base_model.model.", ""): v | |
for k, v in lora_model_sd.items() | |
if "lora" not in k | |
} | |
LlamaForCausalLM.save_pretrained(base_model, '../models/legal-base-7b', state_dict=deloreanized_sd, max_shard_size="400MB") | |