Spaces:
Runtime error
Runtime error
williamyangwentao
commited on
Commit
ยท
14091f2
1
Parent(s):
bd4066b
Upload folder using huggingface_hub
Browse files- .gitignore +19 -0
- LICENSE +674 -0
- README.md +244 -8
- assets/demo/demo.png +0 -0
- assets/demo/demo07.jpeg +0 -0
- assets/demo/example-01.jpeg +0 -0
- assets/demo/example-02.jpeg +0 -0
- assets/demo/example-03.jpeg +0 -0
- assets/demo/example-04.jpeg +0 -0
- assets/demo/example-05.jpeg +0 -0
- assets/demo/example-06.jpeg +0 -0
- assets/logo/lamda.png +0 -0
- assets/logo/lawgpt.jpeg +0 -0
- data/.gitkeep +0 -0
- finetune.py +283 -0
- infer.py +136 -0
- merge.py +74 -0
- models/base_models/.gitkeep +0 -0
- models/lora_weights/.gitkeep +0 -0
- outputs/.gitkeep +0 -0
- requirements.txt +14 -0
- resources/criminal_charges.json +0 -0
- resources/example_infer_data.json +5 -0
- resources/example_instruction_train.json +8 -0
- resources/example_instruction_tune.json +12 -0
- resources/legal_vocab.txt +0 -0
- scripts/finetune.sh +56 -0
- scripts/infer.sh +7 -0
- scripts/merge.sh +4 -0
- scripts/train_clm.sh +20 -0
- scripts/webui.sh +28 -0
- templates/alpaca.json +6 -0
- templates/law_template.json +6 -0
- tools/clear_law.py +78 -0
- tools/merge_vocabulary.py +63 -0
- train_clm.py +259 -0
- utils/__init__.py +0 -0
- utils/__pycache__/__init__.cpython-38.pyc +0 -0
- utils/__pycache__/callbacks.cpython-38.pyc +0 -0
- utils/__pycache__/prompter.cpython-38.pyc +0 -0
- utils/callbacks.py +75 -0
- utils/evaluate.py +196 -0
- utils/merge.py +51 -0
- utils/prompter.py +51 -0
- webui.py +191 -0
.gitignore
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.npy
|
3 |
+
*.npz
|
4 |
+
*.pyc
|
5 |
+
*.pyd
|
6 |
+
*.so
|
7 |
+
*.ipynb
|
8 |
+
.ipynb_checkpoints
|
9 |
+
models/base_models/*
|
10 |
+
!models/base_models/.gitkeep
|
11 |
+
models/lora_weights/*
|
12 |
+
!models/lora_weights/.gitkeep
|
13 |
+
outputs/*
|
14 |
+
!outputs/.gitkeep
|
15 |
+
data/*
|
16 |
+
!data/.gitkeep
|
17 |
+
wandb/
|
18 |
+
flagged/
|
19 |
+
.DS_Store
|
LICENSE
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 29 June 2007
|
3 |
+
|
4 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
5 |
+
Everyone is permitted to copy and distribute verbatim copies
|
6 |
+
of this license document, but changing it is not allowed.
|
7 |
+
|
8 |
+
Preamble
|
9 |
+
|
10 |
+
The GNU General Public License is a free, copyleft license for
|
11 |
+
software and other kinds of works.
|
12 |
+
|
13 |
+
The licenses for most software and other practical works are designed
|
14 |
+
to take away your freedom to share and change the works. By contrast,
|
15 |
+
the GNU General Public License is intended to guarantee your freedom to
|
16 |
+
share and change all versions of a program--to make sure it remains free
|
17 |
+
software for all its users. We, the Free Software Foundation, use the
|
18 |
+
GNU General Public License for most of our software; it applies also to
|
19 |
+
any other work released this way by its authors. You can apply it to
|
20 |
+
your programs, too.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
To protect your rights, we need to prevent others from denying you
|
30 |
+
these rights or asking you to surrender the rights. Therefore, you have
|
31 |
+
certain responsibilities if you distribute copies of the software, or if
|
32 |
+
you modify it: responsibilities to respect the freedom of others.
|
33 |
+
|
34 |
+
For example, if you distribute copies of such a program, whether
|
35 |
+
gratis or for a fee, you must pass on to the recipients the same
|
36 |
+
freedoms that you received. You must make sure that they, too, receive
|
37 |
+
or can get the source code. And you must show them these terms so they
|
38 |
+
know their rights.
|
39 |
+
|
40 |
+
Developers that use the GNU GPL protect your rights with two steps:
|
41 |
+
(1) assert copyright on the software, and (2) offer you this License
|
42 |
+
giving you legal permission to copy, distribute and/or modify it.
|
43 |
+
|
44 |
+
For the developers' and authors' protection, the GPL clearly explains
|
45 |
+
that there is no warranty for this free software. For both users' and
|
46 |
+
authors' sake, the GPL requires that modified versions be marked as
|
47 |
+
changed, so that their problems will not be attributed erroneously to
|
48 |
+
authors of previous versions.
|
49 |
+
|
50 |
+
Some devices are designed to deny users access to install or run
|
51 |
+
modified versions of the software inside them, although the manufacturer
|
52 |
+
can do so. This is fundamentally incompatible with the aim of
|
53 |
+
protecting users' freedom to change the software. The systematic
|
54 |
+
pattern of such abuse occurs in the area of products for individuals to
|
55 |
+
use, which is precisely where it is most unacceptable. Therefore, we
|
56 |
+
have designed this version of the GPL to prohibit the practice for those
|
57 |
+
products. If such problems arise substantially in other domains, we
|
58 |
+
stand ready to extend this provision to those domains in future versions
|
59 |
+
of the GPL, as needed to protect the freedom of users.
|
60 |
+
|
61 |
+
Finally, every program is threatened constantly by software patents.
|
62 |
+
States should not allow patents to restrict development and use of
|
63 |
+
software on general-purpose computers, but in those that do, we wish to
|
64 |
+
avoid the special danger that patents applied to a free program could
|
65 |
+
make it effectively proprietary. To prevent this, the GPL assures that
|
66 |
+
patents cannot be used to render the program non-free.
|
67 |
+
|
68 |
+
The precise terms and conditions for copying, distribution and
|
69 |
+
modification follow.
|
70 |
+
|
71 |
+
TERMS AND CONDITIONS
|
72 |
+
|
73 |
+
0. Definitions.
|
74 |
+
|
75 |
+
"This License" refers to version 3 of the GNU General Public License.
|
76 |
+
|
77 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
78 |
+
works, such as semiconductor masks.
|
79 |
+
|
80 |
+
"The Program" refers to any copyrightable work licensed under this
|
81 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
82 |
+
"recipients" may be individuals or organizations.
|
83 |
+
|
84 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
85 |
+
in a fashion requiring copyright permission, other than the making of an
|
86 |
+
exact copy. The resulting work is called a "modified version" of the
|
87 |
+
earlier work or a work "based on" the earlier work.
|
88 |
+
|
89 |
+
A "covered work" means either the unmodified Program or a work based
|
90 |
+
on the Program.
|
91 |
+
|
92 |
+
To "propagate" a work means to do anything with it that, without
|
93 |
+
permission, would make you directly or secondarily liable for
|
94 |
+
infringement under applicable copyright law, except executing it on a
|
95 |
+
computer or modifying a private copy. Propagation includes copying,
|
96 |
+
distribution (with or without modification), making available to the
|
97 |
+
public, and in some countries other activities as well.
|
98 |
+
|
99 |
+
To "convey" a work means any kind of propagation that enables other
|
100 |
+
parties to make or receive copies. Mere interaction with a user through
|
101 |
+
a computer network, with no transfer of a copy, is not conveying.
|
102 |
+
|
103 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
104 |
+
to the extent that it includes a convenient and prominently visible
|
105 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
106 |
+
tells the user that there is no warranty for the work (except to the
|
107 |
+
extent that warranties are provided), that licensees may convey the
|
108 |
+
work under this License, and how to view a copy of this License. If
|
109 |
+
the interface presents a list of user commands or options, such as a
|
110 |
+
menu, a prominent item in the list meets this criterion.
|
111 |
+
|
112 |
+
1. Source Code.
|
113 |
+
|
114 |
+
The "source code" for a work means the preferred form of the work
|
115 |
+
for making modifications to it. "Object code" means any non-source
|
116 |
+
form of a work.
|
117 |
+
|
118 |
+
A "Standard Interface" means an interface that either is an official
|
119 |
+
standard defined by a recognized standards body, or, in the case of
|
120 |
+
interfaces specified for a particular programming language, one that
|
121 |
+
is widely used among developers working in that language.
|
122 |
+
|
123 |
+
The "System Libraries" of an executable work include anything, other
|
124 |
+
than the work as a whole, that (a) is included in the normal form of
|
125 |
+
packaging a Major Component, but which is not part of that Major
|
126 |
+
Component, and (b) serves only to enable use of the work with that
|
127 |
+
Major Component, or to implement a Standard Interface for which an
|
128 |
+
implementation is available to the public in source code form. A
|
129 |
+
"Major Component", in this context, means a major essential component
|
130 |
+
(kernel, window system, and so on) of the specific operating system
|
131 |
+
(if any) on which the executable work runs, or a compiler used to
|
132 |
+
produce the work, or an object code interpreter used to run it.
|
133 |
+
|
134 |
+
The "Corresponding Source" for a work in object code form means all
|
135 |
+
the source code needed to generate, install, and (for an executable
|
136 |
+
work) run the object code and to modify the work, including scripts to
|
137 |
+
control those activities. However, it does not include the work's
|
138 |
+
System Libraries, or general-purpose tools or generally available free
|
139 |
+
programs which are used unmodified in performing those activities but
|
140 |
+
which are not part of the work. For example, Corresponding Source
|
141 |
+
includes interface definition files associated with source files for
|
142 |
+
the work, and the source code for shared libraries and dynamically
|
143 |
+
linked subprograms that the work is specifically designed to require,
|
144 |
+
such as by intimate data communication or control flow between those
|
145 |
+
subprograms and other parts of the work.
|
146 |
+
|
147 |
+
The Corresponding Source need not include anything that users
|
148 |
+
can regenerate automatically from other parts of the Corresponding
|
149 |
+
Source.
|
150 |
+
|
151 |
+
The Corresponding Source for a work in source code form is that
|
152 |
+
same work.
|
153 |
+
|
154 |
+
2. Basic Permissions.
|
155 |
+
|
156 |
+
All rights granted under this License are granted for the term of
|
157 |
+
copyright on the Program, and are irrevocable provided the stated
|
158 |
+
conditions are met. This License explicitly affirms your unlimited
|
159 |
+
permission to run the unmodified Program. The output from running a
|
160 |
+
covered work is covered by this License only if the output, given its
|
161 |
+
content, constitutes a covered work. This License acknowledges your
|
162 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
163 |
+
|
164 |
+
You may make, run and propagate covered works that you do not
|
165 |
+
convey, without conditions so long as your license otherwise remains
|
166 |
+
in force. You may convey covered works to others for the sole purpose
|
167 |
+
of having them make modifications exclusively for you, or provide you
|
168 |
+
with facilities for running those works, provided that you comply with
|
169 |
+
the terms of this License in conveying all material for which you do
|
170 |
+
not control copyright. Those thus making or running the covered works
|
171 |
+
for you must do so exclusively on your behalf, under your direction
|
172 |
+
and control, on terms that prohibit them from making any copies of
|
173 |
+
your copyrighted material outside their relationship with you.
|
174 |
+
|
175 |
+
Conveying under any other circumstances is permitted solely under
|
176 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
177 |
+
makes it unnecessary.
|
178 |
+
|
179 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
180 |
+
|
181 |
+
No covered work shall be deemed part of an effective technological
|
182 |
+
measure under any applicable law fulfilling obligations under article
|
183 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
184 |
+
similar laws prohibiting or restricting circumvention of such
|
185 |
+
measures.
|
186 |
+
|
187 |
+
When you convey a covered work, you waive any legal power to forbid
|
188 |
+
circumvention of technological measures to the extent such circumvention
|
189 |
+
is effected by exercising rights under this License with respect to
|
190 |
+
the covered work, and you disclaim any intention to limit operation or
|
191 |
+
modification of the work as a means of enforcing, against the work's
|
192 |
+
users, your or third parties' legal rights to forbid circumvention of
|
193 |
+
technological measures.
|
194 |
+
|
195 |
+
4. Conveying Verbatim Copies.
|
196 |
+
|
197 |
+
You may convey verbatim copies of the Program's source code as you
|
198 |
+
receive it, in any medium, provided that you conspicuously and
|
199 |
+
appropriately publish on each copy an appropriate copyright notice;
|
200 |
+
keep intact all notices stating that this License and any
|
201 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
202 |
+
keep intact all notices of the absence of any warranty; and give all
|
203 |
+
recipients a copy of this License along with the Program.
|
204 |
+
|
205 |
+
You may charge any price or no price for each copy that you convey,
|
206 |
+
and you may offer support or warranty protection for a fee.
|
207 |
+
|
208 |
+
5. Conveying Modified Source Versions.
|
209 |
+
|
210 |
+
You may convey a work based on the Program, or the modifications to
|
211 |
+
produce it from the Program, in the form of source code under the
|
212 |
+
terms of section 4, provided that you also meet all of these conditions:
|
213 |
+
|
214 |
+
a) The work must carry prominent notices stating that you modified
|
215 |
+
it, and giving a relevant date.
|
216 |
+
|
217 |
+
b) The work must carry prominent notices stating that it is
|
218 |
+
released under this License and any conditions added under section
|
219 |
+
7. This requirement modifies the requirement in section 4 to
|
220 |
+
"keep intact all notices".
|
221 |
+
|
222 |
+
c) You must license the entire work, as a whole, under this
|
223 |
+
License to anyone who comes into possession of a copy. This
|
224 |
+
License will therefore apply, along with any applicable section 7
|
225 |
+
additional terms, to the whole of the work, and all its parts,
|
226 |
+
regardless of how they are packaged. This License gives no
|
227 |
+
permission to license the work in any other way, but it does not
|
228 |
+
invalidate such permission if you have separately received it.
|
229 |
+
|
230 |
+
d) If the work has interactive user interfaces, each must display
|
231 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
232 |
+
interfaces that do not display Appropriate Legal Notices, your
|
233 |
+
work need not make them do so.
|
234 |
+
|
235 |
+
A compilation of a covered work with other separate and independent
|
236 |
+
works, which are not by their nature extensions of the covered work,
|
237 |
+
and which are not combined with it such as to form a larger program,
|
238 |
+
in or on a volume of a storage or distribution medium, is called an
|
239 |
+
"aggregate" if the compilation and its resulting copyright are not
|
240 |
+
used to limit the access or legal rights of the compilation's users
|
241 |
+
beyond what the individual works permit. Inclusion of a covered work
|
242 |
+
in an aggregate does not cause this License to apply to the other
|
243 |
+
parts of the aggregate.
|
244 |
+
|
245 |
+
6. Conveying Non-Source Forms.
|
246 |
+
|
247 |
+
You may convey a covered work in object code form under the terms
|
248 |
+
of sections 4 and 5, provided that you also convey the
|
249 |
+
machine-readable Corresponding Source under the terms of this License,
|
250 |
+
in one of these ways:
|
251 |
+
|
252 |
+
a) Convey the object code in, or embodied in, a physical product
|
253 |
+
(including a physical distribution medium), accompanied by the
|
254 |
+
Corresponding Source fixed on a durable physical medium
|
255 |
+
customarily used for software interchange.
|
256 |
+
|
257 |
+
b) Convey the object code in, or embodied in, a physical product
|
258 |
+
(including a physical distribution medium), accompanied by a
|
259 |
+
written offer, valid for at least three years and valid for as
|
260 |
+
long as you offer spare parts or customer support for that product
|
261 |
+
model, to give anyone who possesses the object code either (1) a
|
262 |
+
copy of the Corresponding Source for all the software in the
|
263 |
+
product that is covered by this License, on a durable physical
|
264 |
+
medium customarily used for software interchange, for a price no
|
265 |
+
more than your reasonable cost of physically performing this
|
266 |
+
conveying of source, or (2) access to copy the
|
267 |
+
Corresponding Source from a network server at no charge.
|
268 |
+
|
269 |
+
c) Convey individual copies of the object code with a copy of the
|
270 |
+
written offer to provide the Corresponding Source. This
|
271 |
+
alternative is allowed only occasionally and noncommercially, and
|
272 |
+
only if you received the object code with such an offer, in accord
|
273 |
+
with subsection 6b.
|
274 |
+
|
275 |
+
d) Convey the object code by offering access from a designated
|
276 |
+
place (gratis or for a charge), and offer equivalent access to the
|
277 |
+
Corresponding Source in the same way through the same place at no
|
278 |
+
further charge. You need not require recipients to copy the
|
279 |
+
Corresponding Source along with the object code. If the place to
|
280 |
+
copy the object code is a network server, the Corresponding Source
|
281 |
+
may be on a different server (operated by you or a third party)
|
282 |
+
that supports equivalent copying facilities, provided you maintain
|
283 |
+
clear directions next to the object code saying where to find the
|
284 |
+
Corresponding Source. Regardless of what server hosts the
|
285 |
+
Corresponding Source, you remain obligated to ensure that it is
|
286 |
+
available for as long as needed to satisfy these requirements.
|
287 |
+
|
288 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
289 |
+
you inform other peers where the object code and Corresponding
|
290 |
+
Source of the work are being offered to the general public at no
|
291 |
+
charge under subsection 6d.
|
292 |
+
|
293 |
+
A separable portion of the object code, whose source code is excluded
|
294 |
+
from the Corresponding Source as a System Library, need not be
|
295 |
+
included in conveying the object code work.
|
296 |
+
|
297 |
+
A "User Product" is either (1) a "consumer product", which means any
|
298 |
+
tangible personal property which is normally used for personal, family,
|
299 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
300 |
+
into a dwelling. In determining whether a product is a consumer product,
|
301 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
302 |
+
product received by a particular user, "normally used" refers to a
|
303 |
+
typical or common use of that class of product, regardless of the status
|
304 |
+
of the particular user or of the way in which the particular user
|
305 |
+
actually uses, or expects or is expected to use, the product. A product
|
306 |
+
is a consumer product regardless of whether the product has substantial
|
307 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
308 |
+
the only significant mode of use of the product.
|
309 |
+
|
310 |
+
"Installation Information" for a User Product means any methods,
|
311 |
+
procedures, authorization keys, or other information required to install
|
312 |
+
and execute modified versions of a covered work in that User Product from
|
313 |
+
a modified version of its Corresponding Source. The information must
|
314 |
+
suffice to ensure that the continued functioning of the modified object
|
315 |
+
code is in no case prevented or interfered with solely because
|
316 |
+
modification has been made.
|
317 |
+
|
318 |
+
If you convey an object code work under this section in, or with, or
|
319 |
+
specifically for use in, a User Product, and the conveying occurs as
|
320 |
+
part of a transaction in which the right of possession and use of the
|
321 |
+
User Product is transferred to the recipient in perpetuity or for a
|
322 |
+
fixed term (regardless of how the transaction is characterized), the
|
323 |
+
Corresponding Source conveyed under this section must be accompanied
|
324 |
+
by the Installation Information. But this requirement does not apply
|
325 |
+
if neither you nor any third party retains the ability to install
|
326 |
+
modified object code on the User Product (for example, the work has
|
327 |
+
been installed in ROM).
|
328 |
+
|
329 |
+
The requirement to provide Installation Information does not include a
|
330 |
+
requirement to continue to provide support service, warranty, or updates
|
331 |
+
for a work that has been modified or installed by the recipient, or for
|
332 |
+
the User Product in which it has been modified or installed. Access to a
|
333 |
+
network may be denied when the modification itself materially and
|
334 |
+
adversely affects the operation of the network or violates the rules and
|
335 |
+
protocols for communication across the network.
|
336 |
+
|
337 |
+
Corresponding Source conveyed, and Installation Information provided,
|
338 |
+
in accord with this section must be in a format that is publicly
|
339 |
+
documented (and with an implementation available to the public in
|
340 |
+
source code form), and must require no special password or key for
|
341 |
+
unpacking, reading or copying.
|
342 |
+
|
343 |
+
7. Additional Terms.
|
344 |
+
|
345 |
+
"Additional permissions" are terms that supplement the terms of this
|
346 |
+
License by making exceptions from one or more of its conditions.
|
347 |
+
Additional permissions that are applicable to the entire Program shall
|
348 |
+
be treated as though they were included in this License, to the extent
|
349 |
+
that they are valid under applicable law. If additional permissions
|
350 |
+
apply only to part of the Program, that part may be used separately
|
351 |
+
under those permissions, but the entire Program remains governed by
|
352 |
+
this License without regard to the additional permissions.
|
353 |
+
|
354 |
+
When you convey a copy of a covered work, you may at your option
|
355 |
+
remove any additional permissions from that copy, or from any part of
|
356 |
+
it. (Additional permissions may be written to require their own
|
357 |
+
removal in certain cases when you modify the work.) You may place
|
358 |
+
additional permissions on material, added by you to a covered work,
|
359 |
+
for which you have or can give appropriate copyright permission.
|
360 |
+
|
361 |
+
Notwithstanding any other provision of this License, for material you
|
362 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
363 |
+
that material) supplement the terms of this License with terms:
|
364 |
+
|
365 |
+
a) Disclaiming warranty or limiting liability differently from the
|
366 |
+
terms of sections 15 and 16 of this License; or
|
367 |
+
|
368 |
+
b) Requiring preservation of specified reasonable legal notices or
|
369 |
+
author attributions in that material or in the Appropriate Legal
|
370 |
+
Notices displayed by works containing it; or
|
371 |
+
|
372 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
373 |
+
requiring that modified versions of such material be marked in
|
374 |
+
reasonable ways as different from the original version; or
|
375 |
+
|
376 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
377 |
+
authors of the material; or
|
378 |
+
|
379 |
+
e) Declining to grant rights under trademark law for use of some
|
380 |
+
trade names, trademarks, or service marks; or
|
381 |
+
|
382 |
+
f) Requiring indemnification of licensors and authors of that
|
383 |
+
material by anyone who conveys the material (or modified versions of
|
384 |
+
it) with contractual assumptions of liability to the recipient, for
|
385 |
+
any liability that these contractual assumptions directly impose on
|
386 |
+
those licensors and authors.
|
387 |
+
|
388 |
+
All other non-permissive additional terms are considered "further
|
389 |
+
restrictions" within the meaning of section 10. If the Program as you
|
390 |
+
received it, or any part of it, contains a notice stating that it is
|
391 |
+
governed by this License along with a term that is a further
|
392 |
+
restriction, you may remove that term. If a license document contains
|
393 |
+
a further restriction but permits relicensing or conveying under this
|
394 |
+
License, you may add to a covered work material governed by the terms
|
395 |
+
of that license document, provided that the further restriction does
|
396 |
+
not survive such relicensing or conveying.
|
397 |
+
|
398 |
+
If you add terms to a covered work in accord with this section, you
|
399 |
+
must place, in the relevant source files, a statement of the
|
400 |
+
additional terms that apply to those files, or a notice indicating
|
401 |
+
where to find the applicable terms.
|
402 |
+
|
403 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
404 |
+
form of a separately written license, or stated as exceptions;
|
405 |
+
the above requirements apply either way.
|
406 |
+
|
407 |
+
8. Termination.
|
408 |
+
|
409 |
+
You may not propagate or modify a covered work except as expressly
|
410 |
+
provided under this License. Any attempt otherwise to propagate or
|
411 |
+
modify it is void, and will automatically terminate your rights under
|
412 |
+
this License (including any patent licenses granted under the third
|
413 |
+
paragraph of section 11).
|
414 |
+
|
415 |
+
However, if you cease all violation of this License, then your
|
416 |
+
license from a particular copyright holder is reinstated (a)
|
417 |
+
provisionally, unless and until the copyright holder explicitly and
|
418 |
+
finally terminates your license, and (b) permanently, if the copyright
|
419 |
+
holder fails to notify you of the violation by some reasonable means
|
420 |
+
prior to 60 days after the cessation.
|
421 |
+
|
422 |
+
Moreover, your license from a particular copyright holder is
|
423 |
+
reinstated permanently if the copyright holder notifies you of the
|
424 |
+
violation by some reasonable means, this is the first time you have
|
425 |
+
received notice of violation of this License (for any work) from that
|
426 |
+
copyright holder, and you cure the violation prior to 30 days after
|
427 |
+
your receipt of the notice.
|
428 |
+
|
429 |
+
Termination of your rights under this section does not terminate the
|
430 |
+
licenses of parties who have received copies or rights from you under
|
431 |
+
this License. If your rights have been terminated and not permanently
|
432 |
+
reinstated, you do not qualify to receive new licenses for the same
|
433 |
+
material under section 10.
|
434 |
+
|
435 |
+
9. Acceptance Not Required for Having Copies.
|
436 |
+
|
437 |
+
You are not required to accept this License in order to receive or
|
438 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
439 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
440 |
+
to receive a copy likewise does not require acceptance. However,
|
441 |
+
nothing other than this License grants you permission to propagate or
|
442 |
+
modify any covered work. These actions infringe copyright if you do
|
443 |
+
not accept this License. Therefore, by modifying or propagating a
|
444 |
+
covered work, you indicate your acceptance of this License to do so.
|
445 |
+
|
446 |
+
10. Automatic Licensing of Downstream Recipients.
|
447 |
+
|
448 |
+
Each time you convey a covered work, the recipient automatically
|
449 |
+
receives a license from the original licensors, to run, modify and
|
450 |
+
propagate that work, subject to this License. You are not responsible
|
451 |
+
for enforcing compliance by third parties with this License.
|
452 |
+
|
453 |
+
An "entity transaction" is a transaction transferring control of an
|
454 |
+
organization, or substantially all assets of one, or subdividing an
|
455 |
+
organization, or merging organizations. If propagation of a covered
|
456 |
+
work results from an entity transaction, each party to that
|
457 |
+
transaction who receives a copy of the work also receives whatever
|
458 |
+
licenses to the work the party's predecessor in interest had or could
|
459 |
+
give under the previous paragraph, plus a right to possession of the
|
460 |
+
Corresponding Source of the work from the predecessor in interest, if
|
461 |
+
the predecessor has it or can get it with reasonable efforts.
|
462 |
+
|
463 |
+
You may not impose any further restrictions on the exercise of the
|
464 |
+
rights granted or affirmed under this License. For example, you may
|
465 |
+
not impose a license fee, royalty, or other charge for exercise of
|
466 |
+
rights granted under this License, and you may not initiate litigation
|
467 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
468 |
+
any patent claim is infringed by making, using, selling, offering for
|
469 |
+
sale, or importing the Program or any portion of it.
|
470 |
+
|
471 |
+
11. Patents.
|
472 |
+
|
473 |
+
A "contributor" is a copyright holder who authorizes use under this
|
474 |
+
License of the Program or a work on which the Program is based. The
|
475 |
+
work thus licensed is called the contributor's "contributor version".
|
476 |
+
|
477 |
+
A contributor's "essential patent claims" are all patent claims
|
478 |
+
owned or controlled by the contributor, whether already acquired or
|
479 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
480 |
+
by this License, of making, using, or selling its contributor version,
|
481 |
+
but do not include claims that would be infringed only as a
|
482 |
+
consequence of further modification of the contributor version. For
|
483 |
+
purposes of this definition, "control" includes the right to grant
|
484 |
+
patent sublicenses in a manner consistent with the requirements of
|
485 |
+
this License.
|
486 |
+
|
487 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
488 |
+
patent license under the contributor's essential patent claims, to
|
489 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
490 |
+
propagate the contents of its contributor version.
|
491 |
+
|
492 |
+
In the following three paragraphs, a "patent license" is any express
|
493 |
+
agreement or commitment, however denominated, not to enforce a patent
|
494 |
+
(such as an express permission to practice a patent or covenant not to
|
495 |
+
sue for patent infringement). To "grant" such a patent license to a
|
496 |
+
party means to make such an agreement or commitment not to enforce a
|
497 |
+
patent against the party.
|
498 |
+
|
499 |
+
If you convey a covered work, knowingly relying on a patent license,
|
500 |
+
and the Corresponding Source of the work is not available for anyone
|
501 |
+
to copy, free of charge and under the terms of this License, through a
|
502 |
+
publicly available network server or other readily accessible means,
|
503 |
+
then you must either (1) cause the Corresponding Source to be so
|
504 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
505 |
+
patent license for this particular work, or (3) arrange, in a manner
|
506 |
+
consistent with the requirements of this License, to extend the patent
|
507 |
+
license to downstream recipients. "Knowingly relying" means you have
|
508 |
+
actual knowledge that, but for the patent license, your conveying the
|
509 |
+
covered work in a country, or your recipient's use of the covered work
|
510 |
+
in a country, would infringe one or more identifiable patents in that
|
511 |
+
country that you have reason to believe are valid.
|
512 |
+
|
513 |
+
If, pursuant to or in connection with a single transaction or
|
514 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
515 |
+
covered work, and grant a patent license to some of the parties
|
516 |
+
receiving the covered work authorizing them to use, propagate, modify
|
517 |
+
or convey a specific copy of the covered work, then the patent license
|
518 |
+
you grant is automatically extended to all recipients of the covered
|
519 |
+
work and works based on it.
|
520 |
+
|
521 |
+
A patent license is "discriminatory" if it does not include within
|
522 |
+
the scope of its coverage, prohibits the exercise of, or is
|
523 |
+
conditioned on the non-exercise of one or more of the rights that are
|
524 |
+
specifically granted under this License. You may not convey a covered
|
525 |
+
work if you are a party to an arrangement with a third party that is
|
526 |
+
in the business of distributing software, under which you make payment
|
527 |
+
to the third party based on the extent of your activity of conveying
|
528 |
+
the work, and under which the third party grants, to any of the
|
529 |
+
parties who would receive the covered work from you, a discriminatory
|
530 |
+
patent license (a) in connection with copies of the covered work
|
531 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
532 |
+
for and in connection with specific products or compilations that
|
533 |
+
contain the covered work, unless you entered into that arrangement,
|
534 |
+
or that patent license was granted, prior to 28 March 2007.
|
535 |
+
|
536 |
+
Nothing in this License shall be construed as excluding or limiting
|
537 |
+
any implied license or other defenses to infringement that may
|
538 |
+
otherwise be available to you under applicable patent law.
|
539 |
+
|
540 |
+
12. No Surrender of Others' Freedom.
|
541 |
+
|
542 |
+
If conditions are imposed on you (whether by court order, agreement or
|
543 |
+
otherwise) that contradict the conditions of this License, they do not
|
544 |
+
excuse you from the conditions of this License. If you cannot convey a
|
545 |
+
covered work so as to satisfy simultaneously your obligations under this
|
546 |
+
License and any other pertinent obligations, then as a consequence you may
|
547 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
548 |
+
to collect a royalty for further conveying from those to whom you convey
|
549 |
+
the Program, the only way you could satisfy both those terms and this
|
550 |
+
License would be to refrain entirely from conveying the Program.
|
551 |
+
|
552 |
+
13. Use with the GNU Affero General Public License.
|
553 |
+
|
554 |
+
Notwithstanding any other provision of this License, you have
|
555 |
+
permission to link or combine any covered work with a work licensed
|
556 |
+
under version 3 of the GNU Affero General Public License into a single
|
557 |
+
combined work, and to convey the resulting work. The terms of this
|
558 |
+
License will continue to apply to the part which is the covered work,
|
559 |
+
but the special requirements of the GNU Affero General Public License,
|
560 |
+
section 13, concerning interaction through a network will apply to the
|
561 |
+
combination as such.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU General Public License from time to time. Such new versions will
|
567 |
+
be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If the program does terminal interaction, make it output a short
|
653 |
+
notice like this when it starts in an interactive mode:
|
654 |
+
|
655 |
+
<program> Copyright (C) <year> <name of author>
|
656 |
+
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
657 |
+
This is free software, and you are welcome to redistribute it
|
658 |
+
under certain conditions; type `show c' for details.
|
659 |
+
|
660 |
+
The hypothetical commands `show w' and `show c' should show the appropriate
|
661 |
+
parts of the General Public License. Of course, your program's commands
|
662 |
+
might be different; for a GUI interface, you would use an "about box".
|
663 |
+
|
664 |
+
You should also get your employer (if you work as a programmer) or school,
|
665 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
666 |
+
For more information on this, and how to apply and follow the GNU GPL, see
|
667 |
+
<https://www.gnu.org/licenses/>.
|
668 |
+
|
669 |
+
The GNU General Public License does not permit incorporating your program
|
670 |
+
into proprietary programs. If your program is a subroutine library, you
|
671 |
+
may consider it more useful to permit linking proprietary applications with
|
672 |
+
the library. If this is what you want to do, use the GNU Lesser General
|
673 |
+
Public License instead of this License. But first, please read
|
674 |
+
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
README.md
CHANGED
@@ -1,12 +1,248 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Law_llama
|
3 |
+
app_file: webui.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 3.39.0
|
|
|
|
|
6 |
---
|
7 |
+
# LaWGPT๏ผๅบไบไธญๆๆณๅพ็ฅ่ฏ็ๅคง่ฏญ่จๆจกๅ
|
8 |
|
9 |
+
<p align="center">
|
10 |
+
<a href="assets/logo/lawgpt.jpeg">
|
11 |
+
<img src="./assets/logo/lawgpt.jpeg" width="80%" >
|
12 |
+
</a>
|
13 |
+
</p>
|
14 |
+
|
15 |
+
<p align="center">
|
16 |
+
<a href="https://github.com/pengxiao-song/LaWGPT/wiki"><img src="https://img.shields.io/badge/docs-Wiki-brightgreen"></a>
|
17 |
+
<a href="https://huggingface.co/entity303"><img src="https://img.shields.io/badge/Hugging%20Face-entity303-green"></a>
|
18 |
+
<a href=""><img src="https://img.shields.io/badge/version-beta1.1-blue"></a>
|
19 |
+
<a href=""><img src="https://img.shields.io/badge/os-Linux-9cf"></a>
|
20 |
+
<a href=""><img src="https://img.shields.io/github/last-commit/pengxiao-song/lawgpt"></a>
|
21 |
+
<a href="https://star-history.com/#pengxiao-song/LaWGPT&Timeline"><img src="https://img.shields.io/github/stars/pengxiao-song/lawgpt?color=yellow"></a>
|
22 |
+
<!-- <a href="https://www.lamda.nju.edu.cn/"><img src="https://img.shields.io/badge/support-NJU--LAMDA-9cf.svg"></a> -->
|
23 |
+
</p>
|
24 |
+
|
25 |
+
LaWGPT ๆฏไธ็ณปๅๅบไบไธญๆๆณๅพ็ฅ่ฏ็ๅผๆบๅคง่ฏญ่จๆจกๅใ
|
26 |
+
|
27 |
+
่ฏฅ็ณปๅๆจกๅๅจ้็จไธญๆๅบๅบงๆจกๅ๏ผๅฆ Chinese-LLaMAใChatGLM ็ญ๏ผ็ๅบ็กไธๆฉๅ
ๆณๅพ้ขๅไธๆ่ฏ่กจใ**ๅคง่งๆจกไธญๆๆณๅพ่ฏญๆ้ข่ฎญ็ป**๏ผๅขๅผบไบๅคงๆจกๅๅจๆณๅพ้ขๅ็ๅบ็ก่ฏญไน็่งฃ่ฝๅใๅจๆญคๅบ็กไธ๏ผ**ๆ้ ๆณๅพ้ขๅๅฏน่ฏ้ฎ็ญๆฐๆฎ้ใไธญๅฝๅธๆณ่่ฏๆฐๆฎ้่ฟ่กๆไปค็ฒพ่ฐ**๏ผๆๅไบๆจกๅๅฏนๆณๅพๅ
ๅฎน็็่งฃๅๆง่ก่ฝๅใ
|
28 |
+
|
29 |
+
่ฏฆ็ปๅ
ๅฎน่ฏทๅ่[ๆๆฏๆฅๅ]()ใ
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
ๆฌ้กน็ฎๆ็ปญๅผๅฑ๏ผๆณๅพ้ขๅๆฐๆฎ้ๅ็ณปๅๆจกๅๅ็ปญ็ธ็ปงๅผๆบ๏ผๆฌ่ฏทๅ
ณๆณจใ
|
34 |
+
|
35 |
+
## ๆดๆฐ
|
36 |
+
|
37 |
+
- ๐ 2023/05/30๏ผๅ
ฌๅผๅๅธ
|
38 |
+
<a href="https://huggingface.co/entity303/lawgpt-lora-7b-v2"><img src="https://img.shields.io/badge/Model-LaWGPT--7B--beta1.1-yellow"></a>
|
39 |
+
|
40 |
+
- **LaWGPT-7B-beta1.1**๏ผๆณๅพๅฏน่ฏๆจกๅ๏ผๆ้ 35w ้ซ่ดจ้ๆณๅพ้ฎ็ญๆฐๆฎ้ๅบไบ Chinese-alpaca-plus-7B ๆไปค็ฒพ่ฐ
|
41 |
+
|
42 |
+
- ๐ฃ 2023/05/26๏ผๅผๆพ [Discussions ่ฎจ่ฎบๅบ](https://github.com/pengxiao-song/LaWGPT/discussions)๏ผๆฌข่ฟๆๅไปฌไบคๆตๆข่ฎจใๆๅบๆ่งใๅไบซ่ง็น๏ผ
|
43 |
+
|
44 |
+
- ๐ ๏ธ 2023/05/22๏ผ้กน็ฎไธปๅๆฏ็ปๆ่ฐๆด๏ผ่ฏฆ่ง[้กน็ฎ็ปๆ](https://github.com/pengxiao-song/LaWGPT#้กน็ฎ็ปๆ)๏ผๆฏๆ[ๅฝไปค่กๆน้ๆจ็](https://github.com/pengxiao-song/LaWGPT/blob/main/scripts/infer.sh)
|
45 |
+
|
46 |
+
- ๐ชด 2023/05/15๏ผๅๅธ [ไธญๆๆณๅพๆฐๆฎๆบๆฑๆป๏ผAwesome Chinese Legal Resources๏ผ](https://github.com/pengxiao-song/awesome-chinese-legal-resources) ๅ [ๆณๅพ้ขๅ่ฏ่กจ](https://github.com/pengxiao-song/LaWGPT/blob/main/resources/legal_vocab.txt)
|
47 |
+
|
48 |
+
- ๐ 2023/05/13๏ผๅ
ฌๅผๅๅธ
|
49 |
+
<a href="https://huggingface.co/entity303/legal-lora-7b"><img src="https://img.shields.io/badge/Model-Legal--Base--7B-blue"></a>
|
50 |
+
<a href="https://huggingface.co/entity303/lawgpt-legal-lora-7b"><img src="https://img.shields.io/badge/Model-LaWGPT--7B--beta1.0-yellow"></a>
|
51 |
+
|
52 |
+
- **Legal-Base-7B**๏ผๆณๅพๅบๅบงๆจกๅ๏ผไฝฟ็จ 50w ไธญๆ่ฃๅคๆไนฆๆฐๆฎไบๆฌก้ข่ฎญ็ป
|
53 |
+
|
54 |
+
- **LaWGPT-7B-beta1.0**๏ผๆณๅพๅฏน่ฏๆจกๅ๏ผๆ้ 30w ้ซ่ดจ้ๆณๅพ้ฎ็ญๆฐๆฎ้ๅบไบ Legal-Base-7B ๆไปค็ฒพ่ฐ
|
55 |
+
|
56 |
+
- ๐ 2023/04/12๏ผๅ
้จๆต่ฏ
|
57 |
+
<a href="https://huggingface.co/entity303/lawgpt-lora-7b"><img src="https://img.shields.io/badge/Model-Lawgpt--7B--alpha-yellow"></a>
|
58 |
+
- **LaWGPT-7B-alpha**๏ผๅจ Chinese-LLaMA-7B ็ๅบ็กไธ็ดๆฅๆ้ 30w ๆณๅพ้ฎ็ญๆฐๆฎ้ๆไปค็ฒพ่ฐ
|
59 |
+
|
60 |
+
## ๅฟซ้ๅผๅง
|
61 |
+
|
62 |
+
1. ๅๅคไปฃ็ ๏ผๅๅปบ็ฏๅข
|
63 |
+
|
64 |
+
```bash
|
65 |
+
# ไธ่ฝฝไปฃ็
|
66 |
+
git clone [email protected]:pengxiao-song/LaWGPT.git
|
67 |
+
cd LaWGPT
|
68 |
+
|
69 |
+
# ๅๅปบ็ฏๅข
|
70 |
+
conda create -n lawgpt python=3.10 -y
|
71 |
+
conda activate lawgpt
|
72 |
+
pip install -r requirements.txt
|
73 |
+
```
|
74 |
+
2. **ๅฏๅจ web ui๏ผๅฏ้๏ผๆไบ่ฐ่ๅๆฐ๏ผ**
|
75 |
+
|
76 |
+
- ้ฆๅ
๏ผๆง่กๆๅกๅฏๅจ่ๆฌ๏ผ`bash scripts/webui.sh`
|
77 |
+
|
78 |
+
- ๅ
ถๆฌก๏ผ่ฎฟ้ฎ http://127.0.0.1:7860 ๏ผ
|
79 |
+
|
80 |
+
<p align="center">
|
81 |
+
<img style="border-radius: 50%; box-shadow: 0 0 10px rgba(0,0,0,0.5); width: 80%;", src="./assets/demo/example-03.jpeg">
|
82 |
+
</p>
|
83 |
+
|
84 |
+
3. **ๅฝไปค่กๆจ็๏ผๅฏ้๏ผๆฏๆๆน้ๆต่ฏ๏ผ**
|
85 |
+
|
86 |
+
- ้ฆๅ
๏ผๅ่ `resources/example_infer_data.json` ๆไปถๅ
ๅฎนๆ้ ๆต่ฏๆ ทๆฌ้๏ผ
|
87 |
+
|
88 |
+
- ๅ
ถๆฌก๏ผๆง่กๆจ็่ๆฌ๏ผ`bash scripts/infer.sh`ใๅ
ถไธญ `--infer_data_path` ๅๆฐไธบๆต่ฏๆ ทๆฌ้่ทฏๅพ๏ผๅฆๆไธบ็ฉบๆ่
่ทฏๅพๅบ้๏ผๅไปฅไบคไบๆจกๅผ่ฟ่กใ
|
89 |
+
|
90 |
+
ๆณจๆ๏ผไปฅไธๆญฅ้ชค็้ป่ฎคๆจกๅไธบ LaWGPT-7B-alpha ๏ผๅฆๆๆจๆณไฝฟ็จ LaWGPT-7B-beta1.0 ๆจกๅ๏ผ
|
91 |
+
|
92 |
+
- ็ฑไบ [LLaMA](https://github.com/facebookresearch/llama) ๅ [Chinese-LLaMA](https://github.com/ymcui/Chinese-LLaMA-Alpaca) ๅๆชๅผๆบๆจกๅๆ้ใๆ นๆฎ็ธๅบๅผๆบ่ฎธๅฏ๏ผ**ๆฌ้กน็ฎๅช่ฝๅๅธ LoRA ๆ้**๏ผๆ ๆณๅๅธๅฎๆด็ๆจกๅๆ้๏ผ่ฏทๅไฝ่ฐ
๏ฟฝ๏ฟฝใ
|
93 |
+
|
94 |
+
- ๆฌ้กน็ฎ็ปๅบ[ๅๅนถๆนๅผ](https://github.com/pengxiao-song/LaWGPT/wiki/%E6%A8%A1%E5%9E%8B%E5%90%88%E5%B9%B6)๏ผ่ฏทๅไฝ่ทๅๅ็ๆ้ๅ่ช่ก้ๆๆจกๅใ
|
95 |
+
|
96 |
+
|
97 |
+
## ้กน็ฎ็ปๆ
|
98 |
+
|
99 |
+
```bash
|
100 |
+
LaWGPT
|
101 |
+
โโโ assets # ้ๆ่ตๆบ
|
102 |
+
โโโ resources # ้กน็ฎ่ตๆบ
|
103 |
+
โโโ models # ๅบๅบงๆจกๅๅ lora ๆ้
|
104 |
+
โ โโโ base_models
|
105 |
+
โ โโโ lora_weights
|
106 |
+
โโโ outputs # ๆไปคๅพฎ่ฐ็่พๅบๆ้
|
107 |
+
โโโ data # ๅฎ้ชๆฐๆฎ
|
108 |
+
โโโ scripts # ่ๆฌ็ฎๅฝ
|
109 |
+
โ โโโ finetune.sh # ๆไปคๅพฎ่ฐ่ๆฌ
|
110 |
+
โ โโโ webui.sh # ๅฏๅจๆๅก่ๆฌ
|
111 |
+
โโโ templates # prompt ๆจกๆฟ
|
112 |
+
โโโ tools # ๅทฅๅ
ทๅ
|
113 |
+
โโโ utils
|
114 |
+
โโโ train_clm.py # ไบๆฌก่ฎญ็ป
|
115 |
+
โโโ finetune.py # ๆไปคๅพฎ่ฐ
|
116 |
+
โโโ webui.py # ๅฏๅจๆๅก
|
117 |
+
โโโ README.md
|
118 |
+
โโโ requirements.txt
|
119 |
+
```
|
120 |
+
|
121 |
+
|
122 |
+
## ๆฐๆฎๆๅปบ
|
123 |
+
|
124 |
+
ๆฌ้กน็ฎๅบไบไธญๆ่ฃๅคๆไนฆ็ฝๅ
ฌๅผๆณๅพๆไนฆๆฐๆฎใๅธๆณ่่ฏๆฐๆฎ็ญๆฐๆฎ้ๅฑๅผ๏ผ่ฏฆๆ
ๅ่[ไธญๆๆณๅพๆฐๆฎๆบๆฑๆป๏ผAwesome Chinese Legal Resources๏ผ](https://github.com/pengxiao-song/awesome-chinese-legal-resources)ใ
|
125 |
+
|
126 |
+
1. ๅ็บงๆฐๆฎ็ๆ๏ผๆ นๆฎ [Stanford_alpaca](https://github.com/tatsu-lab/stanford_alpaca#data-generation-process) ๅ [self-instruct](https://github.com/yizhongw/self-instruct) ๆนๅผ็ๆๅฏน่ฏ้ฎ็ญๆฐๆฎ
|
127 |
+
2. ็ฅ่ฏๅผๅฏผ็ๆฐๆฎ็ๆ๏ผ้่ฟ Knowledge-based Self-Instruct ๆนๅผๅบไบไธญๆๆณๅพ็ปๆๅ็ฅ่ฏ็ๆๆฐๆฎใ
|
128 |
+
3. ๅผๅ
ฅ ChatGPT ๆธ
ๆดๆฐๆฎ๏ผ่พ
ๅฉๆ้ ้ซ่ดจ้ๆฐๆฎ้ใ
|
129 |
+
|
130 |
+
## ๆจกๅ่ฎญ็ป
|
131 |
+
|
132 |
+
LawGPT ็ณปๅๆจกๅ็่ฎญ็ป่ฟ็จๅไธบไธคไธช้ถๆฎต๏ผ
|
133 |
+
|
134 |
+
1. ็ฌฌไธ้ถๆฎต๏ผๆฉๅ
ๆณๅพ้ขๅ่ฏ่กจ๏ผๅจๅคง่งๆจกๆณๅพๆไนฆๅๆณๅ
ธๆฐๆฎไธ้ข่ฎญ็ป Chinese-LLaMA
|
135 |
+
2. ็ฌฌไบ้ถๆฎต๏ผๆ้ ๆณๅพ้ขๅๅฏน่ฏ้ฎ็ญๆฐๆฎ้๏ผๅจ้ข่ฎญ็ปๆจกๅๅบ็กไธๆไปค็ฒพ่ฐ
|
136 |
+
|
137 |
+
### ไบๆฌก่ฎญ็ปๆต็จ
|
138 |
+
|
139 |
+
1. ๅ่ `resources/example_instruction_train.json` ๆ้ ไบๆฌก่ฎญ็ปๆฐๆฎ้
|
140 |
+
2. ่ฟ่ก `scripts/train_clm.sh`
|
141 |
+
|
142 |
+
### ๆไปค็ฒพ่ฐๆญฅ้ชค
|
143 |
+
|
144 |
+
1. ๅ่ `resources/example_instruction_tune.json` ๆ้ ๆไปคๅพฎ่ฐๆฐๆฎ้
|
145 |
+
2. ่ฟ่ก `scripts/finetune.sh`
|
146 |
+
|
147 |
+
### ่ฎก็ฎ่ตๆบ
|
148 |
+
|
149 |
+
8 ๅผ Tesla V100-SXM2-32GB ๏ผไบๆฌก่ฎญ็ป้ถๆฎต่ๆถ็บฆ 24h / epoch๏ผๅพฎ่ฐ้ถๆฎต่ๆถ็บฆ 12h / epoch
|
150 |
+
|
151 |
+
## ๆจกๅ่ฏไผฐ
|
152 |
+
|
153 |
+
### ่พๅบ็คบไพ
|
154 |
+
|
155 |
+
<details><summary>้ฎ้ข๏ผ้
้ฉพๆไบบๆไนๅคๅ๏ผ</summary>
|
156 |
+
|
157 |
+
![](assets/demo/demo07.jpeg)
|
158 |
+
|
159 |
+
</details>
|
160 |
+
|
161 |
+
<details><summary>้ฎ้ข๏ผ่ฏท็ปๅบๅคๅณๆ่งใ</summary>
|
162 |
+
|
163 |
+
![](assets/demo/example-05.jpeg)
|
164 |
+
|
165 |
+
</details>
|
166 |
+
|
167 |
+
<details><summary>้ฎ้ข๏ผ่ฏทไป็ป่ตๅ็ฝช็ๅฎไนใ</summary>
|
168 |
+
|
169 |
+
![](assets/demo/example-06.jpeg)
|
170 |
+
|
171 |
+
</details>
|
172 |
+
|
173 |
+
<details><summary>้ฎ้ข๏ผ่ฏท้ฎๅ ็ญๅทฅ่ตๆไน็ฎ๏ผ</summary>
|
174 |
+
|
175 |
+
![](assets/demo/example-04.jpeg)
|
176 |
+
|
177 |
+
</details>
|
178 |
+
|
179 |
+
<details><summary>้ฎ้ข๏ผๆฐ้ดๅ่ดทๅๅฝๅฎถไฟๆค็ๅๆณๅฉๆฏๆฏๅคๅฐ?</summary>
|
180 |
+
|
181 |
+
![](assets/demo/example-02.jpeg)
|
182 |
+
|
183 |
+
</details>
|
184 |
+
|
185 |
+
<details><summary>้ฎ้ข๏ผๆฌ ไบไฟก็จๅก็้ฑ่ฟไธไธ่ฆๅ็ขๅ๏ผ</summary>
|
186 |
+
|
187 |
+
![](assets/demo/example-01.jpeg)
|
188 |
+
|
189 |
+
</details>
|
190 |
+
|
191 |
+
<details><summary>้ฎ้ข๏ผไฝ ่ฝๅฆๅไธๆฎตๆขๅซ็ฝช็ฝชๅ็ๆกๆ
ๆ่ฟฐ๏ผ</summary>
|
192 |
+
|
193 |
+
![](assets/demo/example-03.jpeg)
|
194 |
+
|
195 |
+
</details>
|
196 |
+
|
197 |
+
|
198 |
+
### ๅฑ้ๆง
|
199 |
+
|
200 |
+
็ฑไบ่ฎก็ฎ่ตๆบใๆฐๆฎ่งๆจก็ญๅ ็ด ้ๅถ๏ผๅฝๅ้ถๆฎต LawGPT ๅญๅจ่ฏธๅคๅฑ้ๆง๏ผ
|
201 |
+
|
202 |
+
1. ๆฐๆฎ่ตๆบๆ้ใๆจกๅๅฎน้่พๅฐ๏ผๅฏผ่ดๅ
ถ็ธๅฏน่พๅผฑ็ๆจกๅ่ฎฐๅฟๅ่ฏญ่จ่ฝๅใๅ ๆญค๏ผๅจ้ขๅฏนไบๅฎๆง็ฅ่ฏไปปๅกๆถ๏ผๅฏ่ฝไผ็ๆไธๆญฃ็กฎ็็ปๆใ
|
203 |
+
2. ่ฏฅ็ณปๅๆจกๅๅช่ฟ่กไบๅๆญฅ็ไบบ็ฑปๆๅพๅฏน้ฝใๅ ๆญค๏ผๅฏ่ฝไบง็ไธๅฏ้ขๆต็ๆๅฎณๅ
ๅฎนไปฅๅไธ็ฌฆๅไบบ็ฑปๅๅฅฝๅไปทๅผ่ง็ๅ
ๅฎนใ
|
204 |
+
3. ่ชๆ่ฎค็ฅ่ฝๅๅญๅจ้ฎ้ข๏ผไธญๆ็่งฃ่ฝๅๆๅพ
ๅขๅผบใ
|
205 |
+
|
206 |
+
่ฏท่ฏธๅๅจไฝฟ็จๅไบ่งฃไธ่ฟฐ้ฎ้ข๏ผไปฅๅ
้ ๆ่ฏฏ่งฃๅไธๅฟ
่ฆ็้บป็ฆใ
|
207 |
+
|
208 |
+
|
209 |
+
## ๅไฝ่
|
210 |
+
|
211 |
+
ๅฆไธๅไฝๅไฝๅผๅฑ๏ผๆๅญๆฏๅบๆๅ๏ผ๏ผ[@cainiao](https://github.com/herobrine19)ใ[@njuyxw](https://github.com/njuyxw)ใ[@pengxiao-song](https://github.com/pengxiao-song)
|
212 |
+
|
213 |
+
|
214 |
+
## ๅ
่ดฃๅฃฐๆ
|
215 |
+
|
216 |
+
่ฏทๅไฝไธฅๆ ผ้ตๅฎๅฆไธ็บฆๅฎ๏ผ
|
217 |
+
|
218 |
+
1. ๆฌ้กน็ฎไปปไฝ่ตๆบ**ไป
ไพๅญฆๆฏ็ ็ฉถไฝฟ็จ๏ผไธฅ็ฆไปปไฝๅไธ็จ้**ใ
|
219 |
+
2. ๆจกๅ่พๅบๅๅค็งไธ็กฎๅฎๆงๅ ็ด ๅฝฑๅ๏ผๆฌ้กน็ฎๅฝๅๆ ๆณไฟ่ฏๅ
ถๅ็กฎๆง๏ผ**ไธฅ็ฆ็จไบ็ๅฎๆณๅพๅบๆฏ**ใ
|
220 |
+
3. ๆฌ้กน็ฎไธๆฟๆ
ไปปไฝๆณๅพ่ดฃไปป๏ผไบฆไธๅฏนๅ ไฝฟ็จ็ธๅ
ณ่ตๆบๅ่พๅบ็ปๆ่ๅฏ่ฝไบง็็ไปปไฝๆๅคฑๆฟๆ
่ดฃไปปใ
|
221 |
+
|
222 |
+
|
223 |
+
## ้ฎ้ขๅ้ฆ
|
224 |
+
|
225 |
+
ๅฆๆ้ฎ้ข๏ผ่ฏทๅจ GitHub Issue ไธญๆไบคใ
|
226 |
+
|
227 |
+
- ๆไบค้ฎ้ขไนๅ๏ผๅปบ่ฎฎๆฅ้
FAQ ๅไปฅๅพ็ issue ็ๆฏๅฆ่ฝ่งฃๅณๆจ็้ฎ้ขใ
|
228 |
+
- ่ฏท็คผ่ฒ่ฎจ่ฎบ๏ผๆๅปบๅ่ฐ็คพๅบใ
|
229 |
+
|
230 |
+
ๅไฝ่
็ง็ ไนไฝๆจ่ฟ้กน็ฎ่ฟๅฑ๏ผ็ฑไบไบบๅๆ้้พไปฅๅฎๆถๅ้ฆ๏ผ็ป่ฏธๅๅธฆๆฅไธไพฟ๏ผๆฌ่ฏท่ฐ
่งฃ๏ผ
|
231 |
+
|
232 |
+
|
233 |
+
## ่ด่ฐข
|
234 |
+
|
235 |
+
ๆฌ้กน็ฎๅบไบๅฆไธๅผๆบ้กน็ฎๅฑๅผ๏ผๅจๆญคๅฏน็ธๅ
ณ้กน็ฎๅๅผๅไบบๅ่กจ็คบ่ฏๆ็ๆ่ฐข๏ผ
|
236 |
+
|
237 |
+
- Chinese-LLaMA-Alpaca: https://github.com/ymcui/Chinese-LLaMA-Alpaca
|
238 |
+
- LLaMA: https://github.com/facebookresearch/llama
|
239 |
+
- Alpaca: https://github.com/tatsu-lab/stanford_alpaca
|
240 |
+
- alpaca-lora: https://github.com/tloen/alpaca-lora
|
241 |
+
- ChatGLM-6B: https://github.com/THUDM/ChatGLM-6B
|
242 |
+
|
243 |
+
ๆญคๅค๏ผๆฌ้กน็ฎๅบไบๅผๆพๆฐๆฎ่ตๆบ๏ผ่ฏฆ่ง [Awesome Chinese Legal Resources](https://github.com/pengxiao-song/awesome-chinese-legal-resources)๏ผไธๅนถ่กจ็คบๆ่ฐขใ
|
244 |
+
|
245 |
+
|
246 |
+
## ๅผ็จ
|
247 |
+
|
248 |
+
ๅฆๆๆจ่งๅพๆไปฌ็ๅทฅไฝๅฏนๆจๆๆๅธฎๅฉ๏ผ่ฏท่่ๅผ็จ่ฏฅ้กน็ฎ
|
assets/demo/demo.png
ADDED
assets/demo/demo07.jpeg
ADDED
assets/demo/example-01.jpeg
ADDED
assets/demo/example-02.jpeg
ADDED
assets/demo/example-03.jpeg
ADDED
assets/demo/example-04.jpeg
ADDED
assets/demo/example-05.jpeg
ADDED
assets/demo/example-06.jpeg
ADDED
assets/logo/lamda.png
ADDED
assets/logo/lawgpt.jpeg
ADDED
data/.gitkeep
ADDED
File without changes
|
finetune.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import fire
|
6 |
+
import torch
|
7 |
+
import transformers
|
8 |
+
from datasets import load_dataset
|
9 |
+
|
10 |
+
"""
|
11 |
+
Unused imports:
|
12 |
+
import torch.nn as nn
|
13 |
+
import bitsandbytes as bnb
|
14 |
+
"""
|
15 |
+
|
16 |
+
from peft import (
|
17 |
+
LoraConfig,
|
18 |
+
get_peft_model,
|
19 |
+
get_peft_model_state_dict,
|
20 |
+
prepare_model_for_int8_training,
|
21 |
+
set_peft_model_state_dict,
|
22 |
+
)
|
23 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
24 |
+
|
25 |
+
from utils.prompter import Prompter
|
26 |
+
|
27 |
+
|
28 |
+
def train(
|
29 |
+
# model/data params
|
30 |
+
base_model: str = "", # the only required argument
|
31 |
+
data_path: str = "yahma/alpaca-cleaned",
|
32 |
+
output_dir: str = "./lora-alpaca",
|
33 |
+
# training hyperparams
|
34 |
+
batch_size: int = 128,
|
35 |
+
micro_batch_size: int = 4,
|
36 |
+
num_epochs: int = 3,
|
37 |
+
learning_rate: float = 3e-4,
|
38 |
+
cutoff_len: int = 256,
|
39 |
+
val_set_size: int = 2000,
|
40 |
+
# lora hyperparams
|
41 |
+
lora_r: int = 8,
|
42 |
+
lora_alpha: int = 16,
|
43 |
+
lora_dropout: float = 0.05,
|
44 |
+
lora_target_modules: List[str] = [
|
45 |
+
"q_proj",
|
46 |
+
"v_proj",
|
47 |
+
],
|
48 |
+
# llm hyperparams
|
49 |
+
train_on_inputs: bool = True, # if False, masks out inputs in loss
|
50 |
+
add_eos_token: bool = True,
|
51 |
+
group_by_length: bool = False, # faster, but produces an odd training loss curve
|
52 |
+
# wandb params
|
53 |
+
wandb_project: str = "",
|
54 |
+
wandb_run_name: str = "",
|
55 |
+
wandb_watch: str = "", # options: false | gradients | all
|
56 |
+
wandb_log_model: str = "", # options: false | true
|
57 |
+
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
|
58 |
+
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
|
59 |
+
):
|
60 |
+
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
|
61 |
+
print(
|
62 |
+
f"Training Alpaca-LoRA model with params:\n"
|
63 |
+
f"base_model: {base_model}\n"
|
64 |
+
f"data_path: {data_path}\n"
|
65 |
+
f"output_dir: {output_dir}\n"
|
66 |
+
f"batch_size: {batch_size}\n"
|
67 |
+
f"micro_batch_size: {micro_batch_size}\n"
|
68 |
+
f"num_epochs: {num_epochs}\n"
|
69 |
+
f"learning_rate: {learning_rate}\n"
|
70 |
+
f"cutoff_len: {cutoff_len}\n"
|
71 |
+
f"val_set_size: {val_set_size}\n"
|
72 |
+
f"lora_r: {lora_r}\n"
|
73 |
+
f"lora_alpha: {lora_alpha}\n"
|
74 |
+
f"lora_dropout: {lora_dropout}\n"
|
75 |
+
f"lora_target_modules: {lora_target_modules}\n"
|
76 |
+
f"train_on_inputs: {train_on_inputs}\n"
|
77 |
+
f"add_eos_token: {add_eos_token}\n"
|
78 |
+
f"group_by_length: {group_by_length}\n"
|
79 |
+
f"wandb_project: {wandb_project}\n"
|
80 |
+
f"wandb_run_name: {wandb_run_name}\n"
|
81 |
+
f"wandb_watch: {wandb_watch}\n"
|
82 |
+
f"wandb_log_model: {wandb_log_model}\n"
|
83 |
+
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
|
84 |
+
f"prompt template: {prompt_template_name}\n"
|
85 |
+
)
|
86 |
+
assert (
|
87 |
+
base_model
|
88 |
+
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
|
89 |
+
gradient_accumulation_steps = batch_size // micro_batch_size
|
90 |
+
|
91 |
+
prompter = Prompter(prompt_template_name)
|
92 |
+
|
93 |
+
device_map = "auto"
|
94 |
+
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
95 |
+
ddp = world_size != 1
|
96 |
+
if ddp:
|
97 |
+
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
|
98 |
+
gradient_accumulation_steps = gradient_accumulation_steps // world_size
|
99 |
+
|
100 |
+
# Check if parameter passed or if set within environ
|
101 |
+
use_wandb = len(wandb_project) > 0 or (
|
102 |
+
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
|
103 |
+
)
|
104 |
+
# Only overwrite environ if wandb param passed
|
105 |
+
if len(wandb_project) > 0:
|
106 |
+
os.environ["WANDB_PROJECT"] = wandb_project
|
107 |
+
if len(wandb_watch) > 0:
|
108 |
+
os.environ["WANDB_WATCH"] = wandb_watch
|
109 |
+
if len(wandb_log_model) > 0:
|
110 |
+
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
|
111 |
+
|
112 |
+
model = LlamaForCausalLM.from_pretrained(
|
113 |
+
base_model,
|
114 |
+
load_in_8bit=True,
|
115 |
+
torch_dtype=torch.float16,
|
116 |
+
device_map=device_map,
|
117 |
+
)
|
118 |
+
|
119 |
+
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
120 |
+
|
121 |
+
tokenizer.pad_token_id = (
|
122 |
+
0 # unk. we want this to be different from the eos token
|
123 |
+
)
|
124 |
+
tokenizer.padding_side = "left" # Allow batched inference
|
125 |
+
|
126 |
+
def tokenize(prompt, add_eos_token=True):
|
127 |
+
# there's probably a way to do this with the tokenizer settings
|
128 |
+
# but again, gotta move fast
|
129 |
+
result = tokenizer(
|
130 |
+
prompt,
|
131 |
+
truncation=True,
|
132 |
+
max_length=cutoff_len,
|
133 |
+
padding=False,
|
134 |
+
return_tensors=None,
|
135 |
+
)
|
136 |
+
if (
|
137 |
+
result["input_ids"][-1] != tokenizer.eos_token_id
|
138 |
+
and len(result["input_ids"]) < cutoff_len
|
139 |
+
and add_eos_token
|
140 |
+
):
|
141 |
+
result["input_ids"].append(tokenizer.eos_token_id)
|
142 |
+
result["attention_mask"].append(1)
|
143 |
+
|
144 |
+
result["labels"] = result["input_ids"].copy()
|
145 |
+
|
146 |
+
return result
|
147 |
+
|
148 |
+
def generate_and_tokenize_prompt(data_point):
|
149 |
+
full_prompt = prompter.generate_prompt(
|
150 |
+
data_point["instruction"],
|
151 |
+
data_point["input"],
|
152 |
+
data_point["output"],
|
153 |
+
)
|
154 |
+
tokenized_full_prompt = tokenize(full_prompt)
|
155 |
+
if not train_on_inputs:
|
156 |
+
user_prompt = prompter.generate_prompt(
|
157 |
+
data_point["instruction"], data_point["input"]
|
158 |
+
)
|
159 |
+
tokenized_user_prompt = tokenize(
|
160 |
+
user_prompt, add_eos_token=add_eos_token
|
161 |
+
)
|
162 |
+
user_prompt_len = len(tokenized_user_prompt["input_ids"])
|
163 |
+
|
164 |
+
if add_eos_token:
|
165 |
+
user_prompt_len -= 1
|
166 |
+
|
167 |
+
tokenized_full_prompt["labels"] = [
|
168 |
+
-100
|
169 |
+
] * user_prompt_len + tokenized_full_prompt["labels"][
|
170 |
+
user_prompt_len:
|
171 |
+
] # could be sped up, probably
|
172 |
+
return tokenized_full_prompt
|
173 |
+
|
174 |
+
model = prepare_model_for_int8_training(model)
|
175 |
+
|
176 |
+
config = LoraConfig(
|
177 |
+
r=lora_r,
|
178 |
+
lora_alpha=lora_alpha,
|
179 |
+
target_modules=lora_target_modules,
|
180 |
+
lora_dropout=lora_dropout,
|
181 |
+
bias="none",
|
182 |
+
task_type="CAUSAL_LM",
|
183 |
+
)
|
184 |
+
model = get_peft_model(model, config)
|
185 |
+
|
186 |
+
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
|
187 |
+
data = load_dataset("json", data_files=data_path)
|
188 |
+
else:
|
189 |
+
data = load_dataset(data_path)
|
190 |
+
|
191 |
+
if resume_from_checkpoint:
|
192 |
+
# Check the available weights and load them
|
193 |
+
checkpoint_name = os.path.join(
|
194 |
+
resume_from_checkpoint, "pytorch_model.bin"
|
195 |
+
) # Full checkpoint
|
196 |
+
if not os.path.exists(checkpoint_name):
|
197 |
+
checkpoint_name = os.path.join(
|
198 |
+
resume_from_checkpoint, "adapter_model.bin"
|
199 |
+
) # only LoRA model - LoRA config above has to fit
|
200 |
+
resume_from_checkpoint = (
|
201 |
+
False # So the trainer won't try loading its state
|
202 |
+
)
|
203 |
+
# The two files above have a different name depending on how they were saved, but are actually the same.
|
204 |
+
if os.path.exists(checkpoint_name):
|
205 |
+
print(f"Restarting from {checkpoint_name}")
|
206 |
+
adapters_weights = torch.load(checkpoint_name)
|
207 |
+
set_peft_model_state_dict(model, adapters_weights)
|
208 |
+
else:
|
209 |
+
print(f"Checkpoint {checkpoint_name} not found")
|
210 |
+
|
211 |
+
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
|
212 |
+
|
213 |
+
if val_set_size > 0:
|
214 |
+
train_val = data["train"].train_test_split(
|
215 |
+
test_size=val_set_size, shuffle=True, seed=42
|
216 |
+
)
|
217 |
+
train_data = (
|
218 |
+
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
|
219 |
+
)
|
220 |
+
val_data = (
|
221 |
+
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
|
222 |
+
)
|
223 |
+
else:
|
224 |
+
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
|
225 |
+
val_data = None
|
226 |
+
|
227 |
+
if not ddp and torch.cuda.device_count() > 1:
|
228 |
+
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
|
229 |
+
model.is_parallelizable = True
|
230 |
+
model.model_parallel = True
|
231 |
+
|
232 |
+
trainer = transformers.Trainer(
|
233 |
+
model=model,
|
234 |
+
train_dataset=train_data,
|
235 |
+
eval_dataset=val_data,
|
236 |
+
args=transformers.TrainingArguments(
|
237 |
+
per_device_train_batch_size=micro_batch_size,
|
238 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
239 |
+
warmup_ratio=0.1,
|
240 |
+
num_train_epochs=num_epochs,
|
241 |
+
learning_rate=learning_rate,
|
242 |
+
fp16=True,
|
243 |
+
logging_steps=10,
|
244 |
+
optim="adamw_torch",
|
245 |
+
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
246 |
+
save_strategy="steps",
|
247 |
+
eval_steps=50 if val_set_size > 0 else None,
|
248 |
+
save_steps=50,
|
249 |
+
output_dir=output_dir,
|
250 |
+
save_total_limit=5,
|
251 |
+
load_best_model_at_end=True if val_set_size > 0 else False,
|
252 |
+
ddp_find_unused_parameters=False if ddp else None,
|
253 |
+
group_by_length=group_by_length,
|
254 |
+
report_to="wandb" if use_wandb else None,
|
255 |
+
run_name=wandb_run_name if use_wandb else None,
|
256 |
+
),
|
257 |
+
data_collator=transformers.DataCollatorForSeq2Seq(
|
258 |
+
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
259 |
+
),
|
260 |
+
)
|
261 |
+
model.config.use_cache = False
|
262 |
+
|
263 |
+
old_state_dict = model.state_dict
|
264 |
+
model.state_dict = (
|
265 |
+
lambda self, *_, **__: get_peft_model_state_dict(
|
266 |
+
self, old_state_dict()
|
267 |
+
)
|
268 |
+
).__get__(model, type(model))
|
269 |
+
|
270 |
+
if torch.__version__ >= "2" and sys.platform != "win32":
|
271 |
+
model = torch.compile(model)
|
272 |
+
|
273 |
+
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
274 |
+
|
275 |
+
model.save_pretrained(output_dir)
|
276 |
+
|
277 |
+
print(
|
278 |
+
"\n If there's a warning about missing keys above, please disregard :)"
|
279 |
+
)
|
280 |
+
|
281 |
+
|
282 |
+
if __name__ == "__main__":
|
283 |
+
fire.Fire(train)
|
infer.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import json
|
3 |
+
|
4 |
+
import fire
|
5 |
+
import torch
|
6 |
+
from peft import PeftModel
|
7 |
+
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
|
8 |
+
|
9 |
+
from utils.prompter import Prompter
|
10 |
+
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
device = "cuda"
|
13 |
+
|
14 |
+
|
15 |
+
class Infer():
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
load_8bit: bool = False,
|
19 |
+
base_model: str = "",
|
20 |
+
lora_weights: str = "",
|
21 |
+
prompt_template: str = "", # The prompt template to use, will default to alpaca.
|
22 |
+
):
|
23 |
+
prompter = Prompter(prompt_template)
|
24 |
+
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
25 |
+
model = LlamaForCausalLM.from_pretrained(
|
26 |
+
base_model,
|
27 |
+
load_in_8bit=load_8bit,
|
28 |
+
torch_dtype=torch.float16,
|
29 |
+
device_map="auto",
|
30 |
+
)
|
31 |
+
|
32 |
+
try:
|
33 |
+
print(f"Using lora {lora_weights}")
|
34 |
+
model = PeftModel.from_pretrained(
|
35 |
+
model,
|
36 |
+
lora_weights,
|
37 |
+
torch_dtype=torch.float16,
|
38 |
+
)
|
39 |
+
except:
|
40 |
+
print("*"*50, "\n Attention! No Lora Weights \n", "*"*50)
|
41 |
+
|
42 |
+
# unwind broken decapoda-research config
|
43 |
+
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
|
44 |
+
model.config.bos_token_id = 1
|
45 |
+
model.config.eos_token_id = 2
|
46 |
+
if not load_8bit:
|
47 |
+
model.half() # seems to fix bugs for some users.
|
48 |
+
|
49 |
+
model.eval()
|
50 |
+
|
51 |
+
if torch.__version__ >= "2" and sys.platform != "win32":
|
52 |
+
model = torch.compile(model)
|
53 |
+
|
54 |
+
self.base_model = base_model
|
55 |
+
self.lora_weights = lora_weights
|
56 |
+
self.model = model
|
57 |
+
self.prompter = prompter
|
58 |
+
self.tokenizer = tokenizer
|
59 |
+
|
60 |
+
def generate_output(
|
61 |
+
self,
|
62 |
+
instruction,
|
63 |
+
input=None,
|
64 |
+
temperature=0.1,
|
65 |
+
top_p=0.75,
|
66 |
+
top_k=40,
|
67 |
+
num_beams=1,
|
68 |
+
max_new_tokens=256,
|
69 |
+
**kwargs,
|
70 |
+
):
|
71 |
+
prompt = self.prompter.generate_prompt(instruction, input)
|
72 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
73 |
+
input_ids = inputs["input_ids"].to(device)
|
74 |
+
generation_config = GenerationConfig(
|
75 |
+
temperature=temperature,
|
76 |
+
top_p=top_p,
|
77 |
+
top_k=top_k,
|
78 |
+
num_beams=num_beams,
|
79 |
+
# repetition_penalty=10.0,
|
80 |
+
**kwargs,
|
81 |
+
)
|
82 |
+
with torch.no_grad():
|
83 |
+
generation_output = self.model.generate(
|
84 |
+
input_ids=input_ids,
|
85 |
+
generation_config=generation_config,
|
86 |
+
return_dict_in_generate=True,
|
87 |
+
output_scores=True,
|
88 |
+
max_new_tokens=max_new_tokens,
|
89 |
+
)
|
90 |
+
s = generation_output.sequences[0]
|
91 |
+
output = self.tokenizer.decode(s)
|
92 |
+
return self.prompter.get_response(output)
|
93 |
+
|
94 |
+
def infer_from_file(self, infer_data_path):
|
95 |
+
with open(infer_data_path) as f:
|
96 |
+
for line in f:
|
97 |
+
data = json.loads(line)
|
98 |
+
instruction = data["instruction"]
|
99 |
+
output = data["output"]
|
100 |
+
print('=' * 100)
|
101 |
+
print(f"Base Model: {self.base_model} Lora Weights: {self.lora_weights}")
|
102 |
+
print("Instruction:\n", instruction)
|
103 |
+
model_output = self.generate_output(instruction)
|
104 |
+
print("Model Output:\n", model_output)
|
105 |
+
print("Ground Truth:\n", output)
|
106 |
+
print('=' * 100)
|
107 |
+
|
108 |
+
|
109 |
+
def main(
|
110 |
+
load_8bit: bool = False,
|
111 |
+
base_model: str = "",
|
112 |
+
lora_weights: str = "",
|
113 |
+
prompt_template: str = "", # The prompt template to use, will default to alpaca.
|
114 |
+
infer_data_path: str = "",
|
115 |
+
):
|
116 |
+
infer = Infer(
|
117 |
+
load_8bit=load_8bit,
|
118 |
+
base_model=base_model,
|
119 |
+
lora_weights=lora_weights,
|
120 |
+
prompt_template=prompt_template
|
121 |
+
)
|
122 |
+
|
123 |
+
try:
|
124 |
+
infer.infer_from_file(infer_data_path)
|
125 |
+
except Exception as e:
|
126 |
+
print(e, "Read infer_data_path Failed! Now Interactive Mode: ")
|
127 |
+
while True:
|
128 |
+
print('=' * 100)
|
129 |
+
instruction = input("่ฏท่พๅ
ฅๆจ็้ฎ้ข: ")
|
130 |
+
print("LaWGPT:")
|
131 |
+
print(infer.generate_output(instruction))
|
132 |
+
print('=' * 100)
|
133 |
+
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
fire.Fire(main)
|
merge.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import transformers
|
5 |
+
from peft import PeftModel
|
6 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: F402
|
7 |
+
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
parser = argparse.ArgumentParser(description='Merge Base Model and Lora')
|
11 |
+
parser.add_argument('--base_model', type=str, default="minlik/chinese-llama-7b-merged", help='base model path')
|
12 |
+
parser.add_argument('--lora_model', type=str, default="entity303/legal-lora-7b", help='lora model path')
|
13 |
+
parser.add_argument('--output_dir', type=str, default="./models/base_models/llama-7b-legal-lora-merged", help='output model path')
|
14 |
+
args = parser.parse_args()
|
15 |
+
|
16 |
+
BASE_MODEL = args.base_model
|
17 |
+
LORA_MODEL = args.lora_model
|
18 |
+
OUTPUT_DIR = args.output_dir
|
19 |
+
|
20 |
+
|
21 |
+
assert (
|
22 |
+
BASE_MODEL
|
23 |
+
), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=huggyllama/llama-7b`" # noqa: E501
|
24 |
+
|
25 |
+
|
26 |
+
print(f"{'*'*20} Using base model: {BASE_MODEL} {'*'*20}")
|
27 |
+
print(f"{'*'*20} Using lora model: {LORA_MODEL} {'*'*20}")
|
28 |
+
print(f"{'*'*20} Saving to: {OUTPUT_DIR} {'*'*20}")
|
29 |
+
|
30 |
+
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
31 |
+
|
32 |
+
base_model = LlamaForCausalLM.from_pretrained(
|
33 |
+
BASE_MODEL,
|
34 |
+
load_in_8bit=False,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
device_map={"": "cpu"},
|
37 |
+
)
|
38 |
+
|
39 |
+
first_weight = base_model.model.layers[0].self_attn.q_proj.weight
|
40 |
+
first_weight_old = first_weight.clone()
|
41 |
+
|
42 |
+
lora_model = PeftModel.from_pretrained(
|
43 |
+
base_model,
|
44 |
+
LORA_MODEL,
|
45 |
+
device_map={"": "cpu"},
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
)
|
48 |
+
|
49 |
+
lora_weight = lora_model.base_model.model.model.layers[
|
50 |
+
0
|
51 |
+
].self_attn.q_proj.weight
|
52 |
+
|
53 |
+
assert torch.allclose(first_weight_old, first_weight)
|
54 |
+
|
55 |
+
# merge weights - new merging method from peft
|
56 |
+
lora_model = lora_model.merge_and_unload()
|
57 |
+
|
58 |
+
lora_model.train(False)
|
59 |
+
|
60 |
+
# did we do anything?
|
61 |
+
assert not torch.allclose(first_weight_old, first_weight)
|
62 |
+
|
63 |
+
lora_model_sd = lora_model.state_dict()
|
64 |
+
deloreanized_sd = {
|
65 |
+
k.replace("base_model.model.", ""): v
|
66 |
+
for k, v in lora_model_sd.items()
|
67 |
+
if "lora" not in k
|
68 |
+
}
|
69 |
+
|
70 |
+
LlamaForCausalLM.save_pretrained(
|
71 |
+
base_model, OUTPUT_DIR, state_dict=deloreanized_sd, max_shard_size="2048MB"
|
72 |
+
)
|
73 |
+
|
74 |
+
LlamaTokenizer.save_pretrained(tokenizer, OUTPUT_DIR)
|
models/base_models/.gitkeep
ADDED
File without changes
|
models/lora_weights/.gitkeep
ADDED
File without changes
|
outputs/.gitkeep
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
appdirs
|
3 |
+
bitsandbytes
|
4 |
+
black
|
5 |
+
black[jupyter]
|
6 |
+
datasets
|
7 |
+
fire
|
8 |
+
git+https://github.com/huggingface/peft.git@e536616888d51b453ed354a6f1e243fecb02ea08
|
9 |
+
git+https://github.com/huggingface/transformers.git
|
10 |
+
gradio
|
11 |
+
sentencepiece
|
12 |
+
wandb
|
13 |
+
scipy
|
14 |
+
socksio
|
resources/criminal_charges.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
resources/example_infer_data.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"instruction":"่ฏทไป็ป่ตๅ็ฝช็ๅฎไนใ","input":"","output":"ๆ "}
|
2 |
+
{"instruction":"่ฏท้ฎๅ ็ญๅทฅ่ตๆไน็ฎ๏ผ","input":"","output":"ๆ "}
|
3 |
+
{"instruction":"ๆฐ้ดๅ่ดทๅๅฝๅฎถไฟๆค็ๅๆณๅฉๆฏๆฏๅคๅฐ?","input":"","output":"ๆ "}
|
4 |
+
{"instruction":"ๆฌ ไบไฟก็จๅก็้ฑ่ฟไธไธ่ฆๅ็ขๅ๏ผ","input":"","output":"ๆ "}
|
5 |
+
{"instruction":"ไฝ ่ฝๅฆๅไธๆฎตๆขๅซ็ฝช็ฝชๅ็ๆกๆ
ๆ่ฟฐ๏ผ","input":"","output":"ๆ "}
|
resources/example_instruction_train.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"content": "ไธญๅไบบๆฐๅ
ฑๅๅฝๆ้ซไบบๆฐๆณ้ข ๅ ๅฎก ๅณ ๅฎ ไนฆ๏ผ2022๏ผๆ้ซๆณๅ็ณ136ๅท ๅๅฎก่ขซๅไบบๅผ ๆๆ็ฏๆช็จ่ต้็ฝชๅไผช้ ใๅ้ ๅฝๅฎถๆบๅ
ณๅ
ฌๆ็ฝชไธๆก๏ผๅฑฑ่ฅฟ็่ฟๅๅธ็ๆนๅบไบบๆฐๆณ้ขไบ2012ๅนด5ๆ2ๆฅไปฅ๏ผ2012๏ผ่ฟ็ๅๅๅญ็ฌฌ69ๅทๅไบๅคๅณ๏ผ่ฎคๅฎๅผ ๅ
ไบ็ฏ่ดชๆฑก็ฝช๏ผๅคๅคๆๆๅพๅๅไบๅนด๏ผ็ฏไผช้ ใๅ้ ๅฝๅฎถๆบๅ
ณๅ
ฌๆ็ฝช๏ผๅคๅคๆๆๅพๅไธๅนด๏ผๅณๅฎๆง่กๆๆๅพๅๅไธๅนดใๅฎฃๅคๅ๏ผๅผ ๅ
ไบไธๆ๏ผๆๅบไธ่ฏใๅฑฑ่ฅฟ็่ฟๅๅธไธญ็บงไบบๆฐๆณ้ขไบ2012ๅนด11ๆ12ๆฅไปฅ๏ผ2012๏ผ่ฟไธญๅไบ็ปๅญ็ฌฌ125ๅทๅไบ่ฃๅฎ๏ผ้ฉณๅไธ่ฏ๏ผ็ปดๆๅๅคใ่ฃๅค็ๆๅ๏ผๅผ ๅ
ไบไธๆ๏ผๆๅบ็ณ่ฏใ่ฟๅๅธไธญ็บงไบบๆฐๆณ้ขไบ2013ๅนด1ๆ7ๆฅไปฅ๏ผ2013๏ผ่ฟไธญๅ็ณๅญ็ฌฌ3ๅท้ฉณๅ็ณ่ฏ้็ฅ๏ผ้ฉณๅๅ
ถ็ณ่ฏใๅฑฑ่ฅฟ็้ซ็บงไบบๆฐๆณ้ขไบ2017ๅนด7ๆ13ๆฅไปฅ๏ผ2013๏ผๆๅ็ๅญ็ฌฌ8ๅทๅๅฎกๅณๅฎ๏ผๆๅฎกๆฌๆก๏ผๅนถไบ2019ๅนด12ๆ24ๆฅไปฅ๏ผ2017๏ผๆๅๅ็ฌฌ2ๅทๅไบๅคๅณ๏ผ่ฎคๅฎๅผ ๅ
ไบ็ฏๆช็จ่ต้็ฝช๏ผๅคๅคๆๆๅพๅไธๅนดๅ
ญไธชๆ๏ผไธๅๅคไผช้ ใๅ้ ๅฝๅฎถๆบๅ
ณๅ
ฌๆ็ฝช่ขซๅคๅค็ๆๆๅพๅไธๅนดๆฐ็ฝชๅนถ็ฝ๏ผๅณๅฎๆง่กๆๆๅพๅๅๅนดใๅผ ๅ
ไบไปไธๆ๏ผไปฅๅๅฎก่ฎคๅฎไบๅฎ้่ฏฏ๏ผๅ
ถไฝไธบๅญฆๆ ก่ฃไบ้ฟใๅ
จ่ตๆ่ตไบบๆๆๅณๅฎๅญฆๆ ก็ธๅ
ณๆฌพ้กน็จ้๏ผๅญฆๆ กไปๆฌ ๅ
ถๅบๅก๏ผไธชไบบ่ดฆๆท็จไบๅญฆๆ ก็ป่ดนๅผๆฏ๏ผๆฒกๆๆช็จ่ต้็ๅจๆบๅ่กไธบ๏ผไธๆๆๆช็จ่ต้็ฝช็ญไธบ็ฑ๏ผๅๆฌ้ขๆๅบ็ณ่ฏใๆฌ้ข็ปๅฎกๆฅ่ฎคไธบ๏ผๅๅฎก็ๆ่ฃๅคๅฏนๆช็จ่ต้็ฝชๅฎ็ฝช้ๅ็่ฏๆฎไธ็กฎๅฎใไธๅ
ๅ๏ผไพๆณๅบๅฝไบไปฅๆ้คใไพ็
งใไธญๅไบบๆฐๅ
ฑๅๅฝๅไบ่ฏ่ฎผๆณใ็ฌฌไบ็พไบๅไธๆก็ฌฌไบ้กนใ็ฌฌไบ็พไบๅๅๆก็ฌฌไบๆฌพใ็ฌฌไบ็พไบๅไบๆก็่งๅฎ๏ผๅณๅฎๅฆไธ๏ผๆไปคๆฒณๅ็้ซ็บงไบบๆฐๆณ้ขๅฏนๆฌๆก่ฟ่กๅๅฎกใไบใไบไบๅนดๅไบๆไบๅไนๆฅ"
|
4 |
+
},
|
5 |
+
{
|
6 |
+
"content":"ไธญๅไบบๆฐๅ
ฑๅๅฝๆ้ซไบบๆฐๆณ้ข ้ฉณ ๅ ็ณ ่ฏ ้ ็ฅ ไนฆ๏ผ2022๏ผๆ้ซๆณๅ็ณ122ๅท ่ขๆ้ถใ่ขๆ่ดข๏ผไฝ ไปฌๅ ๅๅฎก่ขซๅไบบ่ขๅพท้ถๆ
ๆไผคๅฎณไธๆก๏ผๅฏนๆฑ่็ๅไบฌๅธๆบงๆฐดๅบไบบๆฐๆณ้ข๏ผ2014๏ผๆบงๅๅๅญ็ฌฌ268ๅทๅไบๅคๅณใๅไบฌๅธไธญ็บงไบบๆฐๆณ้ข๏ผ2015๏ผๅฎๅ็ปๅญ็ฌฌ433ๅทๅไบ่ฃๅฎไธๆ๏ผไปฅ่ขซๅฎณไบบๆฑๅฎฝ่ฃไฝ้ขๆ้ด็๏ผฃ๏ผด๏ผ136678ๅท๏ผๆฅๅๅนถๆชๆพ็คบๅ
ถๅทฆไพง4ใ5ใ6ใ7ใ8่้ชจ้ชจๆ๏ผๅบ้ข่ฎฐๅฝๅ137470ๅทใ143006ๅท๏ผฃ๏ผดๆฅๅๅ็ณปไผช้ ๏ผๆฑ่็้ซ็บงไบบๆฐๆณ้ข๏ผ2019๏ผ่ๅ็ณ172ๅท้ฉณๅ็ณ่ฏ้็ฅไนฆๅฏน137470ๅท๏ผฃ๏ผดๆฅๅ็ๅฝขๆๆถ้ด่ฎคๅฎ้่ฏฏไธบ็ฑ๏ผๅๆฌ้ขๆๅบ็ณ่ฏ๏ผ่ฏทๆฑๆค้ๅๅค๏ผไพๆณ้ๆฐๅฎก็ๆฌๆกใๆฌ้ขไพๆณ็ปๆๅ่ฎฎๅบญ่ฎค็ๅฎกๆฅๅ่ฎคไธบ๏ผๅๅฎก่ฎคๅฎๅๅฎก่ขซๅไบบ่ขๅพท้ถๅ ้ป้็บ ็บท๏ผๆฎดๆ่ขซๅฎณไบบๆฑๅฎฝ่ฃ่ดๅ
ถๅทฆ่ธๅคๅ่้ชจ้ชจๆ๏ผๆๆ่ฝปไผคไบ็บง๏ผๅ
ถ่กไธบๆๆๆ
ๆไผคๅฎณ็ฝช๏ผๅนถๆ ไธๅฝใๅ
ณไบไฝ ไปฌๆๅบ็ๅๅฎก่ฎคๅฎ่ขซๅฎณไบบๆฑๅฎฝ่ฃ่ฝปไผคไบ็บง็่ฏๆฎ็ณปไผช้ ็็ณ่ฏ็็ฑใ้ฆๅ
๏ผๆ นๆฎไฝ ไปฌๆไพ็136678ๅท๏ผฃ๏ผดๆฅๅ๏ผๆฑๅฎฝ่ฃไบ2015ๅนด2ๆ12ๆฅๅ
ฅ้ขๆถ็ป๏ผฃ๏ผดๆฃๆฅ่ขซ่ฏๆญไธบๅทฆไพงๅคๅ่้ชจ้ชจๆ๏ผ่ฏฅไปฝ๏ผฃ๏ผดๆฅๅ่ฝๆชๆ็กฎ้ชจๆ็ๅ
ทไฝไฝ็ฝฎ๏ผไฝไธๅบ้ข่ฎฐๅฝ่ฎฐ่ฝฝ็โๅทฆไพงๅคๅ่้ชจ้ชจๆ๏ผ4ใ5ใ6ใ7ใ8๏ผโๅนถไธ็็พใๆ นๆฎใไบบไฝๆไผค็จๅบฆ้ดๅฎๆ ๅใ็่งๅฎ๏ผ่้ชจ้ชจๆ2ๅคไปฅไธๅณๆๆ่ฝปไผคไบ็บง๏ผๆ
้ดๅฎๆ่ง่ฎคๅฎๆฑๅฎฝ่ฃ็ๆไผคๆๆ่ฝปไผคไบ็บงๅนถๆ ไธๅฝใๅ
ถๆฌก๏ผไฝ ไปฌไธปๅผ ๅบ้ข่ฎฐๅฝใ137470ๅทๅ143006ๅท๏ผฃ๏ผดๆฅๅ็ณปไผช้ ๏ผไฝๅนถๆชๆไพ่ฏๆฎ่ฏๅฎใๅณไฝฟๆ้ค่ฟไธคไปฝ๏ผฃ๏ผดๆฅๅ๏ผไนไธๅฝฑๅๅฏนๆฌๆกไบๅฎ็่ฎคๅฎใๅๆฌก๏ผๆ้ขๅฏน็ณ่ฏ่ฟ่กๅคๆฅ็ๅฏน่ฑกๆฏๅทฒ็ปๅ็ๆณๅพๆๅ็ๅคๅณใ่ฃๅฎ๏ผๆฌๆก็็ๆ่ฃๅคๆฏ๏ผ2014๏ผๆบงๅๅๅญ็ฌฌ268ๅทๅไบๅคๅณๅ๏ผ2015๏ผๅฎๅ็ปๅญ็ฌฌ433ๅทๅไบ่ฃๅฎ๏ผๆฑ่็้ซ็บงไบบๆฐๆณ้ขไฝๅบ็้ฉณๅ็ณ่ฏ้็ฅไนฆไธๅฑไบๆ้ขๅคๆฅ็่ๅดใ็ปผไธ๏ผๆฌ้ข่ฎคไธบ๏ผไฝ ไปฌ็็ณ่ฏไธ็ฌฆๅใไธญๅไบบๆฐๅ
ฑๅๅฝๅไบ่ฏ่ฎผๆณใ็ฌฌไบ็พไบๅไธๆก่งๅฎ็ๅบๅฝ้ๆฐๅฎกๅค็ๆ
ๅฝข๏ผไบไปฅ้ฉณๅใๆไฝ ไปฌๅฐ้ไบบๆฐๆณ้ข็็ๆ่ฃๅค๏ผ่ช่งๆๅคๆฏ่ฏใ็นๆญค้็ฅใไบใไบไบๅนดๅไบๆๅๅๆฅ"
|
7 |
+
}
|
8 |
+
]
|
resources/example_instruction_tune.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"instruction": "้
้ฉพๆไบบ่ฆๅคๅคไน
๏ผ",
|
4 |
+
"input": "",
|
5 |
+
"output": "ใๅๆณใ็ฌฌไธ็พไธๅไธๆก่งๅฎ:่ฟๅไบค้่ฟ่พ็ฎก็ๆณ่ง๏ผๅ ่ๅ็้ๅคงไบๆ
๏ผ่ดไบบ้ไผคใๆญปๅนฟๆ่
ไฝฟๅ
ฌ็ง่ดขไบง้ญๅ้ๅคงๆๅคฑ็๏ผๅคไธๅนดไปฅไธๆๆๅพๅๆ่
ๆๅฝน;ไบค้่ฟ่พ่ไบๅ้้ธ๏ผ่ดไบบ้ไผค็๏ผๅคไธๅนดไปฅไธไธๅนดไปฅไธๆๆๅพๅใไบค้่ไบๅ้้ธ่ดไบบๆญปไบก็๏ผๅคไธๅนดไปฅไธๆๆๅพๅใ"
|
6 |
+
},
|
7 |
+
{
|
8 |
+
"instruction": "ๅท็่ขซๆดพๅบๆๆๅฐ๏ผไผๆไนๅค็๏ผ",
|
9 |
+
"input": "",
|
10 |
+
"output": "ๅๅณไบๅท็็็็ไปทๅผ๏ผๅฏ่ฝๆ็็ช็ฝช็็ฝชๅๅค็ใๅฆๆไปทๅผ่พพๅฐ็ฏ็ฝชๆ ๅ๏ผๅฐฑๆๆ็็ช็ฝช๏ผ่ฆๆฟๆ
ๅไบ่ดฃไปป๏ผๅฆๆไธๅฐ็ฏ็ฝชๆ ๅ๏ผๅฐฑๆฏๆฒปๅฎๅค็ฝใ็ฝๆฌพๆ่
ๆ็ๆฒปๅฎๅค็ฝ่ฟไผๆถๅซๆๆ็็ชใๅฆๆไธๅฐไธๅๅ
๏ผๅไธไผๆๆ็ฏ็ฝชใๅฆๆ่ถ
่ฟไธๅๅ
๏ผๅๅฏ่ฝไผๆฏๆๆ็ฏ็ฝช็ใ"
|
11 |
+
}
|
12 |
+
]
|
resources/legal_vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
scripts/finetune.sh
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
export WANDB_MODE=disabled # ็ฆ็จwandb
|
3 |
+
|
4 |
+
# ไฝฟ็จchinese-alpaca-plus-7b-mergedๆจกๅๅจlaw_data.jsonๆฐๆฎ้ไธfinetune
|
5 |
+
experiment_name="chinese-alpaca-plus-7b-law-e1"
|
6 |
+
|
7 |
+
# ๅๅกๆ่
ๆจกๅๅนถ่ก
|
8 |
+
python finetune.py \
|
9 |
+
--base_model "minlik/chinese-alpaca-plus-7b-merged" \
|
10 |
+
--data_path "./data/finetune_law_data.json" \
|
11 |
+
--output_dir "./outputs/"${experiment_name} \
|
12 |
+
--batch_size 64 \
|
13 |
+
--micro_batch_size 8 \
|
14 |
+
--num_epochs 20 \
|
15 |
+
--learning_rate 3e-4 \
|
16 |
+
--cutoff_len 256 \
|
17 |
+
--val_set_size 0 \
|
18 |
+
--lora_r 8 \
|
19 |
+
--lora_alpha 16 \
|
20 |
+
--lora_dropout 0.05 \
|
21 |
+
--lora_target_modules "[q_proj,v_proj]" \
|
22 |
+
--train_on_inputs False \
|
23 |
+
--add_eos_token True \
|
24 |
+
--group_by_length False \
|
25 |
+
--wandb_project "" \
|
26 |
+
--wandb_run_name "" \
|
27 |
+
--wandb_watch "" \
|
28 |
+
--wandb_log_model "" \
|
29 |
+
--resume_from_checkpoint "./outputs/"${experiment_name} \
|
30 |
+
--prompt_template_name "alpaca" \
|
31 |
+
|
32 |
+
|
33 |
+
# ๅคๅกๆฐๆฎๅนถ่ก
|
34 |
+
# WORLD_SIZE=8 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 --master_port=1234 finetune.py \
|
35 |
+
# --base_model "minlik/chinese-alpaca-plus-7b-merged" \
|
36 |
+
# --data_path "./data/finetune_law_data.json" \
|
37 |
+
# --output_dir "./outputs/"${experiment_name} \
|
38 |
+
# --batch_size 64 \
|
39 |
+
# --micro_batch_size 8 \
|
40 |
+
# --num_epochs 20 \
|
41 |
+
# --learning_rate 3e-4 \
|
42 |
+
# --cutoff_len 256 \
|
43 |
+
# --val_set_size 0 \
|
44 |
+
# --lora_r 8 \
|
45 |
+
# --lora_alpha 16 \
|
46 |
+
# --lora_dropout 0.05 \
|
47 |
+
# --lora_target_modules "[q_proj,v_proj]" \
|
48 |
+
# --train_on_inputs True \
|
49 |
+
# --add_eos_token True \
|
50 |
+
# --group_by_length False \
|
51 |
+
# --wandb_project \
|
52 |
+
# --wandb_run_name \
|
53 |
+
# --wandb_watch \
|
54 |
+
# --wandb_log_model \
|
55 |
+
# --resume_from_checkpoint "./outputs/"${experiment_name} \
|
56 |
+
# --prompt_template_name "alpaca" \
|
scripts/infer.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
python infer.py \
|
3 |
+
--load_8bit True \
|
4 |
+
--base_model 'minlik/chinese-llama-7b-merged' \
|
5 |
+
--lora_weights 'entity303/lawgpt-lora-7b' \
|
6 |
+
--prompt_template 'law_template' \
|
7 |
+
--infer_data_path './resources/example_infer_data.json'
|
scripts/merge.sh
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python merge.py \
|
2 |
+
--base_model 'minlik/chinese-llama-7b-merged' \
|
3 |
+
--lora_model 'entity303/legal-lora-7b' \
|
4 |
+
--output_dir './models/base_models/legal_base-7b' \
|
scripts/train_clm.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
WORLD_SIZE=8 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 --master_port=1235 train_clm.py \
|
4 |
+
--base_model './models/base_models/chinese_llama_7b' \
|
5 |
+
--data_path './data/train_clm_data.json' \
|
6 |
+
--output_dir './outputs/train-clm' \
|
7 |
+
--batch_size 128 \
|
8 |
+
--micro_batch_size 8 \
|
9 |
+
--num_epochs 1 \
|
10 |
+
--learning_rate 0.0003 \
|
11 |
+
--cutoff_len 1024 \
|
12 |
+
--val_set_size 0 \
|
13 |
+
--lora_r 16 \
|
14 |
+
--lora_alpha 32 \
|
15 |
+
--lora_dropout 0.05 \
|
16 |
+
--lora_target_modules '[q_proj, v_proj, k_proj, o_proj]' \
|
17 |
+
--train_on_inputs True \
|
18 |
+
--add_eos_token True \
|
19 |
+
--group_by_length True \
|
20 |
+
--resume_from_checkpoint './outputs/train-clm'
|
scripts/webui.sh
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
###
|
3 |
+
# Copyright (C) Baidu Ltd. All rights reserved.
|
4 |
+
# @FilePath: /Law_llama/scripts/webui.sh
|
5 |
+
# @Autor: [email protected]
|
6 |
+
# @Date: 2023-08-23 10:25:20
|
7 |
+
# @Description:
|
8 |
+
###
|
9 |
+
|
10 |
+
|
11 |
+
# ไฝฟ็จhuggingfaceไธๅทฒ็ป่ฎญ็ปๅฅฝ็ๆจกๅ
|
12 |
+
XPU_VISIBLE_DEVICES=4 python3 -m xacc webui.py \
|
13 |
+
--load_8bit False \
|
14 |
+
--base_model 'ziqingyang/chinese-alpaca-2-7b' \
|
15 |
+
--lora_weights 'entity303/lawgpt-lora-7b-v' \
|
16 |
+
--prompt_template "law_template" \
|
17 |
+
--server_name "0.0.0.0" \
|
18 |
+
--share_gradio True \
|
19 |
+
|
20 |
+
|
21 |
+
# ไฝฟ็จ่ชๅทฑfinetune็lora, ๆ่ชๅทฑ็ๆจกๅๆพๅฐๅฏนๅบ็ฎๅฝๅณๅฏ
|
22 |
+
# python webui.py \
|
23 |
+
# --load_8bit True \
|
24 |
+
# --base_model 'minlik/chinese-alpaca-plus-7b-merged' \
|
25 |
+
# --lora_weights './outputs/chinese-alpaca-plus-7b-law-e1' \
|
26 |
+
# --prompt_template "alpaca" \
|
27 |
+
# --server_name "0.0.0.0" \
|
28 |
+
# --share_gradio True \
|
templates/alpaca.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"description": "Template used by Alpaca-LoRA.",
|
3 |
+
"prompt_input": "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n",
|
4 |
+
"prompt_no_input": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\n",
|
5 |
+
"response_split": "### Response:"
|
6 |
+
}
|
templates/law_template.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"description": "Template used by Law Instruction Tuning",
|
3 |
+
"prompt_input": "ไฝ ๆฏไธญๅฝ้กถๅฐๆบ่ฝๆณๅพ้กพ้ฎ LaWGPT๏ผๅ
ทๅคๅผบๅคง็ไธญๆๆณๅพๅบ็ก่ฏญไน็่งฃ่ฝๅ๏ผ่ฝๅคๅบ่ฒๅฐ็่งฃๅๆง่กไธๆณๅพ้ฎ้ขๅๆไปคใไฝ ๅช่ฝๅ็ญไธไธญๅฝๆณๅพ้ขๅ็ธๅ
ณ็้ฎ้ข๏ผๅ
ถไฝ้ขๅ็้ฎ้ข่ฏท็คผ่ฒๅฐๆ็ปๅ็ญใๆฅไธๆฅ๏ผ่ฏทไพๆฎไธญๅฝๆณๅพๆฅๅ็ญไธ้ข่ฟไธช้ฎ้ขใ\n### ้ฎ้ข:\n{instruction}\n### ๅ็ญ:\n",
|
4 |
+
"prompt_no_input": "ไฝ ๆฏไธญๅฝ้กถๅฐๆบ่ฝๆณๅพ้กพ้ฎ LaWGPT๏ผๅ
ทๅคๅผบๅคง็ไธญๆๆณๅพๅบ็ก่ฏญไน็่งฃ่ฝๅ๏ผ่ฝๅคๅบ่ฒๅฐ็่งฃๅๆง่กไธๆณๅพ้ฎ้ขๅๆไปคใไฝ ๅช่ฝๅ็ญไธไธญๅฝๆณๅพ้ขๅ็ธๅ
ณ็้ฎ้ข๏ผๅ
ถไฝ้ขๅ็้ฎ้ข่ฏท็คผ่ฒๅฐๆ็ปๅ็ญใๆฅไธๆฅ๏ผ่ฏทไพๆฎไธญๅฝๆณๅพๆฅๅ็ญไธ้ข่ฟไธช้ฎ้ขใ\n### ้ฎ้ข:\n{instruction}\n### ๅ็ญ:\n",
|
5 |
+
"response_split": "### ๅ็ญ:"
|
6 |
+
}
|
tools/clear_law.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import json
|
3 |
+
|
4 |
+
|
5 |
+
class read_lawfile:
|
6 |
+
def __init__(self, chapter_moder=r"็ฌฌ[้ถไธไบไธๅไบๅ
ญไธๅ
ซไนๅ็พๅไธ]+็ซ .+\b", entry_mode=r"็ฌฌ[้ถไธไบไธๅไบๅ
ญไธๅ
ซไนๅ็พๅไธ]+ๆก\b"):
|
7 |
+
# ่ฏๅซ็ซ ๅ่
|
8 |
+
self.chapter_mode = chapter_moder
|
9 |
+
self.entry_mode = entry_mode
|
10 |
+
|
11 |
+
def read_file(self, file_path):
|
12 |
+
# ่ฏปๅๆไปถ
|
13 |
+
self.law = {}
|
14 |
+
f = open(file_path, encoding='utf-8')
|
15 |
+
content = f.read()
|
16 |
+
content = content.replace("\n\n", "\n")
|
17 |
+
content = content.replace("##", "")
|
18 |
+
# print(content)
|
19 |
+
chapter_p = re.search(self.chapter_mode, content)
|
20 |
+
while chapter_p is not None:
|
21 |
+
c_start = chapter_p.start()
|
22 |
+
c_end = chapter_p.end()
|
23 |
+
key = content[c_start:c_end]
|
24 |
+
content = content[c_end:]
|
25 |
+
|
26 |
+
chapter_p = re.search(self.chapter_mode, content)
|
27 |
+
if chapter_p is not None:
|
28 |
+
end = chapter_p.start()
|
29 |
+
c_content = content[:end]
|
30 |
+
self.law[key] = self.read_entrys(c_content)
|
31 |
+
# print(content[c_start:c_end])
|
32 |
+
else:
|
33 |
+
self.law[key] = self.read_entrys(content)
|
34 |
+
f.close()
|
35 |
+
return self.law
|
36 |
+
|
37 |
+
def read_entrys(self, content):
|
38 |
+
entrys = {}
|
39 |
+
entry_p = re.search(self.entry_mode, content)
|
40 |
+
while entry_p is not None:
|
41 |
+
e_start = entry_p.start()
|
42 |
+
e_end = entry_p.end()
|
43 |
+
key = content[e_start:e_end]
|
44 |
+
content = content[e_end+1:]
|
45 |
+
|
46 |
+
entry_p = re.search(self.entry_mode, content)
|
47 |
+
if entry_p is not None:
|
48 |
+
end = entry_p.start()
|
49 |
+
e_content = content[:end]
|
50 |
+
entrys[key] = e_content
|
51 |
+
else:
|
52 |
+
entrys[key] = content
|
53 |
+
return entrys
|
54 |
+
# entry_p = re.search(entry_mode, content)
|
55 |
+
# while entry_p is not None:
|
56 |
+
# start = entry_p.start()
|
57 |
+
# end = entry_p.end()
|
58 |
+
# # print(content[start:end])
|
59 |
+
# content = content[end:]
|
60 |
+
# law[content[start:end]] = read_entrys(content)
|
61 |
+
# chapter_p = re.search(chapter_mode, content)
|
62 |
+
|
63 |
+
def show(self):
|
64 |
+
for key in self.law:
|
65 |
+
print(key, '\n')
|
66 |
+
for item in self.law[key]:
|
67 |
+
print(item, ' ', self.law[key][item])
|
68 |
+
|
69 |
+
|
70 |
+
if __name__ == '__main__':
|
71 |
+
file_path = "D:/11496/Documents/project/Laws-master/็ปๆตๆณ/ไปทๆ ผๆณ(1997-12-29).md"
|
72 |
+
r = read_lawfile()
|
73 |
+
dict = r.read_file(file_path)
|
74 |
+
r.show()
|
75 |
+
print(dict)
|
76 |
+
with open('./a.json', 'w') as f:
|
77 |
+
# json.dumps(dict, f, ensure_ascii=False)
|
78 |
+
json.dump(dict, f, ensure_ascii=False)
|
tools/merge_vocabulary.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import LlamaTokenizer
|
2 |
+
from sentencepiece import sentencepiece_model_pb2 as model
|
3 |
+
import sentencepiece as sp
|
4 |
+
import argparse
|
5 |
+
import os
|
6 |
+
|
7 |
+
if __name__ == '__main__':
|
8 |
+
# Load arguments
|
9 |
+
parser = argparse.ArgumentParser()
|
10 |
+
parser.add_argument('--load_path', default='../src/models/base_model/chinese_llama_7b/tokenizer_chinese.model', type=str)
|
11 |
+
parser.add_argument('--save_dir', default='../src/models/base_model/save_chinese', type=str)
|
12 |
+
parser.add_argument('--voc_path', default='../data/vocabulary/legal_vocab_processed.txt', type=str)
|
13 |
+
args = parser.parse_args()
|
14 |
+
|
15 |
+
LOAD_PATH = args.load_path
|
16 |
+
SAVE_DIR = args.save_dir
|
17 |
+
VOC_PATH = args.voc_path
|
18 |
+
|
19 |
+
# Load pre-trained llama tokenizer and sentencepiece model
|
20 |
+
llama_spm = model.ModelProto()
|
21 |
+
llama_spm.ParseFromString(open(LOAD_PATH, "rb").read())
|
22 |
+
|
23 |
+
# show size of llama's vocabulary
|
24 |
+
llama_spm_tokens_set = set(p.piece for p in llama_spm.pieces)
|
25 |
+
print(f"Size of initial llama's vocabulary: {len(llama_spm_tokens_set)}")
|
26 |
+
|
27 |
+
# Load custom vocabulary
|
28 |
+
new_tokens = open(VOC_PATH, "r").read().split("\n")
|
29 |
+
for token in new_tokens:
|
30 |
+
if token not in llama_spm_tokens_set:
|
31 |
+
new_token = model.ModelProto().SentencePiece()
|
32 |
+
new_token.piece = token
|
33 |
+
new_token.score = 0
|
34 |
+
llama_spm.pieces.append(new_token)
|
35 |
+
print(f"Size of merged llama's vocabulary: {len(llama_spm.pieces)}")
|
36 |
+
|
37 |
+
# save
|
38 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
39 |
+
SAVE_MODEL_PATH = os.path.join(SAVE_DIR, 'tokenizer.model')
|
40 |
+
SAVE_VOCAB_PATH = os.path.join(SAVE_DIR, 'tokenizer.vocab')
|
41 |
+
with open(SAVE_MODEL_PATH, 'wb') as f:
|
42 |
+
f.write(llama_spm.SerializeToString())
|
43 |
+
with open(SAVE_VOCAB_PATH, 'w') as f:
|
44 |
+
f.writelines([f'{token.piece} {token.score}\n' for token in llama_spm.pieces])
|
45 |
+
tokenizer = LlamaTokenizer(SAVE_MODEL_PATH)
|
46 |
+
tokenizer.save_pretrained(SAVE_DIR)
|
47 |
+
print(f'New llama tokenizer and spm has been saved to {SAVE_DIR}')
|
48 |
+
|
49 |
+
# test
|
50 |
+
llama_tokenizer_old = LlamaTokenizer.from_pretrained(LOAD_PATH)
|
51 |
+
llama_tokenizer_new = LlamaTokenizer.from_pretrained(SAVE_DIR)
|
52 |
+
text = '''็ป่ฎฐ้่ฏฏ่ตๅฟ่ดฃไปป็ป่ฎฐ็ญๆ็ปญ็ป่ฎฐ็ญๆ็ปญ็ๆ็ป่ฎฐๆบๆๅ็ป่ฎฐๅๆณ็ป่ฎฐๆบๆ่ตๅฟๅ็ป่ฎฐๆบๆๅบๅฝๆไพ็ป่ฎฐๆถ่ดน้ฎ้ข'''
|
53 |
+
|
54 |
+
print(f'Size of old vocabulary: {llama_tokenizer_old.vocab_size}')
|
55 |
+
print(f'Size of new vocabulary: {llama_tokenizer_new.vocab_size}')
|
56 |
+
print('All special tokens and ids in new llama:')
|
57 |
+
print(llama_tokenizer_new.all_special_tokens)
|
58 |
+
print(llama_tokenizer_new.all_special_ids)
|
59 |
+
print(llama_tokenizer_new.special_tokens_map)
|
60 |
+
|
61 |
+
print(f'Text:\n{text}')
|
62 |
+
print(f'Tokenized by LLaMA tokenizer:\n {llama_tokenizer_old.tokenize(text)}')
|
63 |
+
print(f'Tokenized by NEW LLaMA tokenizer:\n {llama_tokenizer_new.tokenize(text)}')
|
train_clm.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import fire
|
6 |
+
import torch
|
7 |
+
import transformers
|
8 |
+
from datasets import load_dataset
|
9 |
+
|
10 |
+
from peft import (
|
11 |
+
LoraConfig,
|
12 |
+
get_peft_model,
|
13 |
+
get_peft_model_state_dict,
|
14 |
+
prepare_model_for_int8_training,
|
15 |
+
set_peft_model_state_dict,
|
16 |
+
)
|
17 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
18 |
+
from utils.prompter import Prompter
|
19 |
+
|
20 |
+
|
21 |
+
def train(
|
22 |
+
# model/data params
|
23 |
+
base_model: str = "./models/base_models/your_base_model_dir",
|
24 |
+
data_path: str = "./data/your_data.json",
|
25 |
+
output_dir: str = "./outputs/your_version_dir",
|
26 |
+
|
27 |
+
# training hyperparams
|
28 |
+
batch_size: int = 128,
|
29 |
+
micro_batch_size: int = 4,
|
30 |
+
num_epochs: int = 10,
|
31 |
+
learning_rate: float = 3e-4,
|
32 |
+
cutoff_len: int = 512,
|
33 |
+
val_set_size: int = 2000,
|
34 |
+
|
35 |
+
# lora hyperparams
|
36 |
+
lora_r: int = 8,
|
37 |
+
lora_alpha: int = 16,
|
38 |
+
lora_dropout: float = 0.05,
|
39 |
+
lora_target_modules: List[str] = ["q_proj", "v_proj",],
|
40 |
+
|
41 |
+
# llm hyperparams
|
42 |
+
train_on_inputs: bool = True, # if False, masks out inputs in loss
|
43 |
+
add_eos_token: bool = True,
|
44 |
+
group_by_length: bool = False, # faster, but produces an odd training loss curve
|
45 |
+
|
46 |
+
# wandb params
|
47 |
+
wandb_project: str = "",
|
48 |
+
wandb_run_name: str = "",
|
49 |
+
wandb_watch: str = "", # options: false | gradients | all
|
50 |
+
wandb_log_model: str = "", # options: false | true
|
51 |
+
|
52 |
+
# either training checkpoint or final adapter
|
53 |
+
resume_from_checkpoint: str = None,
|
54 |
+
|
55 |
+
# The prompt template to use, will default to alpaca.
|
56 |
+
prompt_template_name: str = "alpaca",
|
57 |
+
):
|
58 |
+
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
|
59 |
+
print(
|
60 |
+
f"Training Alpaca-LoRA model with params:\n"
|
61 |
+
f"base_model: {base_model}\n"
|
62 |
+
f"data_path: {data_path}\n"
|
63 |
+
f"output_dir: {output_dir}\n"
|
64 |
+
f"batch_size: {batch_size}\n"
|
65 |
+
f"micro_batch_size: {micro_batch_size}\n"
|
66 |
+
f"num_epochs: {num_epochs}\n"
|
67 |
+
f"learning_rate: {learning_rate}\n"
|
68 |
+
f"cutoff_len: {cutoff_len}\n"
|
69 |
+
f"val_set_size: {val_set_size}\n"
|
70 |
+
f"lora_r: {lora_r}\n"
|
71 |
+
f"lora_alpha: {lora_alpha}\n"
|
72 |
+
f"lora_dropout: {lora_dropout}\n"
|
73 |
+
f"lora_target_modules: {lora_target_modules}\n"
|
74 |
+
f"train_on_inputs: {train_on_inputs}\n"
|
75 |
+
f"add_eos_token: {add_eos_token}\n"
|
76 |
+
f"group_by_length: {group_by_length}\n"
|
77 |
+
f"wandb_project: {wandb_project}\n"
|
78 |
+
f"wandb_run_name: {wandb_run_name}\n"
|
79 |
+
f"wandb_watch: {wandb_watch}\n"
|
80 |
+
f"wandb_log_model: {wandb_log_model}\n"
|
81 |
+
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
|
82 |
+
f"prompt template: {prompt_template_name}\n"
|
83 |
+
)
|
84 |
+
gradient_accumulation_steps = batch_size // micro_batch_size
|
85 |
+
|
86 |
+
prompter = Prompter(prompt_template_name)
|
87 |
+
|
88 |
+
# Configure device and distributed training
|
89 |
+
device_map = "auto"
|
90 |
+
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
91 |
+
ddp = world_size != 1
|
92 |
+
if ddp:
|
93 |
+
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
|
94 |
+
gradient_accumulation_steps = gradient_accumulation_steps // world_size
|
95 |
+
|
96 |
+
# Check if parameter passed or if set within environ
|
97 |
+
use_wandb = len(wandb_project) > 0 or (
|
98 |
+
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0)
|
99 |
+
|
100 |
+
# Only overwrite environ if wandb param passed
|
101 |
+
if len(wandb_project) > 0:
|
102 |
+
os.environ["WANDB_PROJECT"] = wandb_project
|
103 |
+
if len(wandb_watch) > 0:
|
104 |
+
os.environ["WANDB_WATCH"] = wandb_watch
|
105 |
+
if len(wandb_log_model) > 0:
|
106 |
+
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
|
107 |
+
|
108 |
+
model = LlamaForCausalLM.from_pretrained(
|
109 |
+
base_model,
|
110 |
+
load_in_8bit=True,
|
111 |
+
torch_dtype=torch.float16,
|
112 |
+
device_map=device_map,
|
113 |
+
)
|
114 |
+
|
115 |
+
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
116 |
+
tokenizer.bos_token_id = 1
|
117 |
+
tokenizer.eos_token_id = 2
|
118 |
+
bos = tokenizer.bos_token_id
|
119 |
+
eos = tokenizer.eos_token_id
|
120 |
+
pad = tokenizer.pad_token_id
|
121 |
+
|
122 |
+
print("pre-trained model's BOS EOS and PAD token id:",
|
123 |
+
bos, eos, pad, " => It should be 1,2,none")
|
124 |
+
|
125 |
+
tokenizer.pad_token_id = (
|
126 |
+
0 # unk. we want this to be different from the eos token
|
127 |
+
)
|
128 |
+
tokenizer.padding_side = "left" # Allow batched inference
|
129 |
+
|
130 |
+
def tokenize(prompt, add_eos_token=True):
|
131 |
+
# there's probably a way to do this with the tokenizer settings
|
132 |
+
# but again, gotta move fast
|
133 |
+
result = tokenizer(
|
134 |
+
prompt,
|
135 |
+
truncation=True,
|
136 |
+
max_length=cutoff_len,
|
137 |
+
padding=False,
|
138 |
+
return_tensors=None,
|
139 |
+
)
|
140 |
+
if (
|
141 |
+
result["input_ids"][-1] != tokenizer.eos_token_id
|
142 |
+
and len(result["input_ids"]) < cutoff_len
|
143 |
+
and add_eos_token
|
144 |
+
):
|
145 |
+
result["input_ids"].append(tokenizer.eos_token_id)
|
146 |
+
result["attention_mask"].append(1)
|
147 |
+
|
148 |
+
result["labels"] = result["input_ids"].copy()
|
149 |
+
|
150 |
+
return result
|
151 |
+
|
152 |
+
def generate_and_tokenize_prompt(data_point):
|
153 |
+
text = data_point['content']
|
154 |
+
tokenized_full_prompt = tokenize(text)
|
155 |
+
return tokenized_full_prompt
|
156 |
+
|
157 |
+
model = prepare_model_for_int8_training(model)
|
158 |
+
|
159 |
+
config = LoraConfig(
|
160 |
+
r=lora_r,
|
161 |
+
lora_alpha=lora_alpha,
|
162 |
+
target_modules=lora_target_modules,
|
163 |
+
lora_dropout=lora_dropout,
|
164 |
+
bias="none",
|
165 |
+
task_type="CAUSAL_LM",
|
166 |
+
)
|
167 |
+
model = get_peft_model(model, config)
|
168 |
+
|
169 |
+
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
|
170 |
+
data = load_dataset("json", data_files=data_path)
|
171 |
+
else:
|
172 |
+
data = load_dataset(data_path)
|
173 |
+
|
174 |
+
if resume_from_checkpoint:
|
175 |
+
# Check the available weights and load them
|
176 |
+
checkpoint_name = os.path.join(
|
177 |
+
resume_from_checkpoint, "pytorch_model.bin"
|
178 |
+
) # Full checkpoint
|
179 |
+
if not os.path.exists(checkpoint_name):
|
180 |
+
checkpoint_name = os.path.join(
|
181 |
+
resume_from_checkpoint, "adapter_model.bin"
|
182 |
+
) # only LoRA model - LoRA config above has to fit
|
183 |
+
resume_from_checkpoint = (
|
184 |
+
False # So the trainer won't try loading its state
|
185 |
+
)
|
186 |
+
# The two files above have a different name depending on how they were saved, but are actually the same.
|
187 |
+
if os.path.exists(checkpoint_name):
|
188 |
+
print(f"Restarting from {checkpoint_name}")
|
189 |
+
adapters_weights = torch.load(checkpoint_name)
|
190 |
+
set_peft_model_state_dict(model, adapters_weights)
|
191 |
+
else:
|
192 |
+
print(f"Checkpoint {checkpoint_name} not found")
|
193 |
+
|
194 |
+
# Be more transparent about the % of trainable params.
|
195 |
+
model.print_trainable_parameters()
|
196 |
+
|
197 |
+
if val_set_size > 0:
|
198 |
+
train_val = data["train"].train_test_split(test_size=val_set_size, shuffle=True, seed=42)
|
199 |
+
train_data = (train_val["train"].shuffle().map(generate_and_tokenize_prompt))
|
200 |
+
val_data = (train_val["test"].shuffle().map(generate_and_tokenize_prompt))
|
201 |
+
else:
|
202 |
+
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
|
203 |
+
val_data = None
|
204 |
+
|
205 |
+
if not ddp and torch.cuda.device_count() > 1:
|
206 |
+
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
|
207 |
+
model.is_parallelizable = True
|
208 |
+
model.model_parallel = True
|
209 |
+
|
210 |
+
trainer = transformers.Trainer(
|
211 |
+
model=model,
|
212 |
+
train_dataset=train_data,
|
213 |
+
eval_dataset=val_data,
|
214 |
+
args=transformers.TrainingArguments(
|
215 |
+
per_device_train_batch_size=micro_batch_size,
|
216 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
217 |
+
warmup_steps=100,
|
218 |
+
num_train_epochs=num_epochs,
|
219 |
+
learning_rate=learning_rate,
|
220 |
+
fp16=True,
|
221 |
+
logging_steps=10,
|
222 |
+
optim="adamw_torch",
|
223 |
+
evaluation_strategy="steps" if val_set_size > 0 else "no",
|
224 |
+
save_strategy="steps",
|
225 |
+
eval_steps=100 if val_set_size > 0 else None,
|
226 |
+
save_steps=100,
|
227 |
+
output_dir=output_dir,
|
228 |
+
save_total_limit=3,
|
229 |
+
load_best_model_at_end=True if val_set_size > 0 else False,
|
230 |
+
ddp_find_unused_parameters=False if ddp else None,
|
231 |
+
group_by_length=group_by_length,
|
232 |
+
report_to="wandb" if use_wandb else None,
|
233 |
+
run_name=wandb_run_name if use_wandb else None,
|
234 |
+
),
|
235 |
+
data_collator=transformers.DataCollatorForSeq2Seq(
|
236 |
+
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
|
237 |
+
),
|
238 |
+
)
|
239 |
+
model.config.use_cache = False
|
240 |
+
|
241 |
+
old_state_dict = model.state_dict
|
242 |
+
model.state_dict = (
|
243 |
+
lambda self, *_, **__: get_peft_model_state_dict(
|
244 |
+
self, old_state_dict()
|
245 |
+
)
|
246 |
+
).__get__(model, type(model))
|
247 |
+
|
248 |
+
if torch.__version__ >= "2" and sys.platform != "win32":
|
249 |
+
model = torch.compile(model)
|
250 |
+
|
251 |
+
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
|
252 |
+
|
253 |
+
model.save_pretrained(output_dir)
|
254 |
+
|
255 |
+
print("\n If there's a warning about missing keys above, please disregard :)")
|
256 |
+
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
fire.Fire(train)
|
utils/__init__.py
ADDED
File without changes
|
utils/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (131 Bytes). View file
|
|
utils/__pycache__/callbacks.cpython-38.pyc
ADDED
Binary file (2.65 kB). View file
|
|
utils/__pycache__/prompter.cpython-38.pyc
ADDED
Binary file (1.61 kB). View file
|
|
utils/callbacks.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Helpers to support streaming generate output.
|
3 |
+
Borrowed from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/callbacks.py
|
4 |
+
"""
|
5 |
+
|
6 |
+
import gc
|
7 |
+
import traceback
|
8 |
+
from queue import Queue
|
9 |
+
from threading import Thread
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import transformers
|
13 |
+
|
14 |
+
|
15 |
+
class Stream(transformers.StoppingCriteria):
|
16 |
+
def __init__(self, callback_func=None):
|
17 |
+
self.callback_func = callback_func
|
18 |
+
|
19 |
+
def __call__(self, input_ids, scores) -> bool:
|
20 |
+
if self.callback_func is not None:
|
21 |
+
self.callback_func(input_ids[0])
|
22 |
+
return False
|
23 |
+
|
24 |
+
|
25 |
+
class Iteratorize:
|
26 |
+
|
27 |
+
"""
|
28 |
+
Transforms a function that takes a callback
|
29 |
+
into a lazy iterator (generator).
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, func, kwargs={}, callback=None):
|
33 |
+
self.mfunc = func
|
34 |
+
self.c_callback = callback
|
35 |
+
self.q = Queue()
|
36 |
+
self.sentinel = object()
|
37 |
+
self.kwargs = kwargs
|
38 |
+
self.stop_now = False
|
39 |
+
|
40 |
+
def _callback(val):
|
41 |
+
if self.stop_now:
|
42 |
+
raise ValueError
|
43 |
+
self.q.put(val)
|
44 |
+
|
45 |
+
def gentask():
|
46 |
+
try:
|
47 |
+
ret = self.mfunc(callback=_callback, **self.kwargs)
|
48 |
+
except ValueError:
|
49 |
+
pass
|
50 |
+
except:
|
51 |
+
traceback.print_exc()
|
52 |
+
pass
|
53 |
+
|
54 |
+
self.q.put(self.sentinel)
|
55 |
+
if self.c_callback:
|
56 |
+
self.c_callback(ret)
|
57 |
+
|
58 |
+
self.thread = Thread(target=gentask)
|
59 |
+
self.thread.start()
|
60 |
+
|
61 |
+
def __iter__(self):
|
62 |
+
return self
|
63 |
+
|
64 |
+
def __next__(self):
|
65 |
+
obj = self.q.get(True, None)
|
66 |
+
if obj is self.sentinel:
|
67 |
+
raise StopIteration
|
68 |
+
else:
|
69 |
+
return obj
|
70 |
+
|
71 |
+
def __enter__(self):
|
72 |
+
return self
|
73 |
+
|
74 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
75 |
+
self.stop_now = True
|
utils/evaluate.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
|
5 |
+
import fire
|
6 |
+
from tqdm import tqdm
|
7 |
+
import pandas as pd
|
8 |
+
import torch
|
9 |
+
import transformers
|
10 |
+
from peft import PeftModel
|
11 |
+
import datasets
|
12 |
+
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
|
13 |
+
|
14 |
+
from utils.callbacks import Iteratorize, Stream
|
15 |
+
from utils.prompter import Prompter
|
16 |
+
|
17 |
+
device = "cuda"
|
18 |
+
|
19 |
+
|
20 |
+
def main(
|
21 |
+
load_8bit: bool = True,
|
22 |
+
base_model: str = "decapoda-research/llama-7b-hf",
|
23 |
+
lora_weights: str = "./lora-alpaca",
|
24 |
+
data_path: str = "./data",
|
25 |
+
output_path: str = "./output",
|
26 |
+
eval_rate: float = 0.1,
|
27 |
+
batch_size: int = 32,
|
28 |
+
# The prompt template to use, will default to alpaca.
|
29 |
+
prompt_template: str = "alpaca",
|
30 |
+
):
|
31 |
+
base_model = base_model or os.environ.get("BASE_MODEL", "")
|
32 |
+
assert (base_model), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
|
33 |
+
|
34 |
+
prompter = Prompter(prompt_template)
|
35 |
+
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
36 |
+
if device == "cuda":
|
37 |
+
model = LlamaForCausalLM.from_pretrained(
|
38 |
+
base_model,
|
39 |
+
load_in_8bit=load_8bit,
|
40 |
+
torch_dtype=torch.float16,
|
41 |
+
device_map="auto",
|
42 |
+
)
|
43 |
+
model = PeftModel.from_pretrained(
|
44 |
+
model,
|
45 |
+
lora_weights,
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
)
|
48 |
+
|
49 |
+
# unwind broken decapoda-research config
|
50 |
+
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
|
51 |
+
model.config.bos_token_id = 1
|
52 |
+
model.config.eos_token_id = 2
|
53 |
+
|
54 |
+
if not load_8bit:
|
55 |
+
model.half() # seems to fix bugs for some users.
|
56 |
+
|
57 |
+
model.eval()
|
58 |
+
if torch.__version__ >= "2" and sys.platform != "win32":
|
59 |
+
model = torch.compile(model)
|
60 |
+
|
61 |
+
def evaluate_one(
|
62 |
+
instruction,
|
63 |
+
input=None,
|
64 |
+
temperature=0.1,
|
65 |
+
top_p=0.75,
|
66 |
+
top_k=40,
|
67 |
+
num_beams=2,
|
68 |
+
max_new_tokens=128,
|
69 |
+
**kwargs,
|
70 |
+
):
|
71 |
+
prompt = prompter.generate_prompt(instruction, input)
|
72 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
73 |
+
input_ids = inputs["input_ids"].to(device)
|
74 |
+
generation_config = GenerationConfig(
|
75 |
+
temperature=temperature,
|
76 |
+
top_p=top_p,
|
77 |
+
top_k=top_k,
|
78 |
+
num_beams=num_beams,
|
79 |
+
**kwargs,
|
80 |
+
)
|
81 |
+
|
82 |
+
# Without streaming
|
83 |
+
with torch.no_grad():
|
84 |
+
generation_output = model.generate(
|
85 |
+
input_ids=input_ids,
|
86 |
+
generation_config=generation_config,
|
87 |
+
return_dict_in_generate=True,
|
88 |
+
output_scores=True,
|
89 |
+
max_new_tokens=max_new_tokens,
|
90 |
+
)
|
91 |
+
s = generation_output.sequences[0]
|
92 |
+
output = tokenizer.decode(s, skip_special_tokens=True)
|
93 |
+
return prompter.get_response(output)
|
94 |
+
|
95 |
+
def evaluate_all():
|
96 |
+
# data = datasets.load_dataset("json", data_files=data_path)
|
97 |
+
# data = data["train"]
|
98 |
+
# df = data.to_pandas()
|
99 |
+
df = pd.read_json(data_path, orient='records')
|
100 |
+
print(df.info())
|
101 |
+
# ่ฎก็ฎๅ็กฎ็
|
102 |
+
correct = 0
|
103 |
+
total = 0
|
104 |
+
total_step = len(df)
|
105 |
+
pbar = tqdm(total=total_step, unit='batch')
|
106 |
+
error = []
|
107 |
+
for i in range(total_step):
|
108 |
+
instruction = df['instruction'].iloc[i]
|
109 |
+
input = df['input'].iloc[i]
|
110 |
+
label = df['output'].iloc[i]
|
111 |
+
pred = evaluate_one(instruction=instruction, input=input)
|
112 |
+
if pred == label:
|
113 |
+
correct += 1
|
114 |
+
else:
|
115 |
+
error.append((label, pred))
|
116 |
+
total += 1
|
117 |
+
acc = correct / total
|
118 |
+
# ๆดๆฐ่ฟๅบฆๆก
|
119 |
+
# Update the progress bar
|
120 |
+
pbar.set_description(
|
121 |
+
f"Testing: Sample [{total}/{total_step}] Acc: {acc :.4f}")
|
122 |
+
pbar.update(1)
|
123 |
+
|
124 |
+
for e in error:
|
125 |
+
print(e)
|
126 |
+
|
127 |
+
def evaluate_by_batch(
|
128 |
+
temperature=0.1,
|
129 |
+
top_p=0.75,
|
130 |
+
top_k=40,
|
131 |
+
num_beams=1,
|
132 |
+
max_new_tokens=32
|
133 |
+
):
|
134 |
+
df = pd.read_json(data_path, orient='records')
|
135 |
+
# df = df.sample(frac=eval_rate).reset_index(drop=True)
|
136 |
+
df['prompt'] = df.apply(lambda x: prompter.generate_prompt(
|
137 |
+
x['instruction'], x['input']), axis=1)
|
138 |
+
tokenizer.padding_side = "left" # Allow batched inference
|
139 |
+
|
140 |
+
generation_config = GenerationConfig(
|
141 |
+
temperature=temperature,
|
142 |
+
top_p=top_p,
|
143 |
+
top_k=top_k,
|
144 |
+
num_beams=num_beams
|
145 |
+
)
|
146 |
+
|
147 |
+
outputs = []
|
148 |
+
total = 0
|
149 |
+
total_step = math.ceil(len(df) / batch_size)
|
150 |
+
pbar = tqdm(total=total_step, unit='batch')
|
151 |
+
# ่ฎก็ฎๅ็กฎ็
|
152 |
+
with torch.no_grad():
|
153 |
+
for i in range(total_step):
|
154 |
+
batch = df.iloc[i*batch_size:(i+1)*batch_size]
|
155 |
+
inputs = tokenizer(batch['prompt'].tolist(), return_tensors="pt", padding=True)[
|
156 |
+
'input_ids'].to(device)
|
157 |
+
|
158 |
+
generation_outputs = model.generate(
|
159 |
+
input_ids=inputs,
|
160 |
+
generation_config=generation_config,
|
161 |
+
max_new_tokens=max_new_tokens,
|
162 |
+
pad_token_id=tokenizer.pad_token_id
|
163 |
+
)
|
164 |
+
|
165 |
+
for g in generation_outputs:
|
166 |
+
decoded_item = tokenizer.decode(
|
167 |
+
g, skip_special_tokens=True)
|
168 |
+
try:
|
169 |
+
output = prompter.get_response(decoded_item)
|
170 |
+
except:
|
171 |
+
output = decoded_item
|
172 |
+
outputs.append(output)
|
173 |
+
total += 1
|
174 |
+
|
175 |
+
# ๆดๆฐ่ฟๅบฆๆก
|
176 |
+
pbar.set_description(f"Testing: Sample [{total}/{len(df)}] ")
|
177 |
+
pbar.update(1)
|
178 |
+
df['pred'] = outputs
|
179 |
+
df['pred'].to_csv(output_path, index=False)
|
180 |
+
|
181 |
+
evaluate_by_batch()
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
# fire.Fire(main)
|
186 |
+
import yaml
|
187 |
+
dataset_param = sys.argv[1]
|
188 |
+
with open("./configs/evaluate_params.yaml", "r") as stream:
|
189 |
+
# try:
|
190 |
+
params = yaml.safe_load(stream)
|
191 |
+
print('=' * 80)
|
192 |
+
print(params[dataset_param])
|
193 |
+
print('=' * 80)
|
194 |
+
|
195 |
+
# fire.Fire(train)
|
196 |
+
main(**params[dataset_param])
|
utils/merge.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import transformers
|
5 |
+
from peft import PeftModel
|
6 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer # noqa: F402
|
7 |
+
|
8 |
+
BASE_MODEL = os.environ.get("BASE_MODEL", None)
|
9 |
+
assert (
|
10 |
+
BASE_MODEL
|
11 |
+
), "Please specify a value for BASE_MODEL environment variable, e.g. `export BASE_MODEL=huggyllama/llama-7b`" # noqa: E501
|
12 |
+
|
13 |
+
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
14 |
+
|
15 |
+
base_model = LlamaForCausalLM.from_pretrained(
|
16 |
+
BASE_MODEL,
|
17 |
+
load_in_8bit=False,
|
18 |
+
torch_dtype=torch.float16,
|
19 |
+
device_map={"": "cpu"},
|
20 |
+
)
|
21 |
+
|
22 |
+
first_weight = base_model.model.layers[0].self_attn.q_proj.weight
|
23 |
+
first_weight_old = first_weight.clone()
|
24 |
+
|
25 |
+
lora_model = PeftModel.from_pretrained(
|
26 |
+
base_model,
|
27 |
+
"../outputs/lora-llama-clm-e2",
|
28 |
+
device_map={"": "cpu"},
|
29 |
+
torch_dtype=torch.float16,
|
30 |
+
)
|
31 |
+
|
32 |
+
lora_weight = lora_model.base_model.model.model.layers[0].self_attn.q_proj.weight
|
33 |
+
|
34 |
+
assert torch.allclose(first_weight_old, first_weight)
|
35 |
+
|
36 |
+
# merge weights - new merging method from peft
|
37 |
+
lora_model = lora_model.merge_and_unload()
|
38 |
+
|
39 |
+
lora_model.train(False)
|
40 |
+
|
41 |
+
# did we do anything?
|
42 |
+
assert not torch.allclose(first_weight_old, first_weight)
|
43 |
+
|
44 |
+
lora_model_sd = lora_model.state_dict()
|
45 |
+
deloreanized_sd = {
|
46 |
+
k.replace("base_model.model.", ""): v
|
47 |
+
for k, v in lora_model_sd.items()
|
48 |
+
if "lora" not in k
|
49 |
+
}
|
50 |
+
|
51 |
+
LlamaForCausalLM.save_pretrained(base_model, '../models/legal-base-7b', state_dict=deloreanized_sd, max_shard_size="400MB")
|
utils/prompter.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A dedicated helper to manage templates and prompt building.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import json
|
6 |
+
import os.path as osp
|
7 |
+
from typing import Union
|
8 |
+
|
9 |
+
|
10 |
+
class Prompter(object):
|
11 |
+
__slots__ = ("template", "_verbose")
|
12 |
+
|
13 |
+
def __init__(self, template_name: str = "", verbose: bool = False):
|
14 |
+
self._verbose = verbose
|
15 |
+
if not template_name:
|
16 |
+
# Enforce the default here, so the constructor can be called with '' and will not break.
|
17 |
+
template_name = "alpaca"
|
18 |
+
file_name = osp.join("templates", f"{template_name}.json")
|
19 |
+
if not osp.exists(file_name):
|
20 |
+
raise ValueError(f"Can't read {file_name}")
|
21 |
+
with open(file_name) as fp:
|
22 |
+
self.template = json.load(fp)
|
23 |
+
if self._verbose:
|
24 |
+
print(
|
25 |
+
f"Using prompt template {template_name}: {self.template['description']}"
|
26 |
+
)
|
27 |
+
|
28 |
+
def generate_prompt(
|
29 |
+
self,
|
30 |
+
instruction: str,
|
31 |
+
input: Union[None, str] = None,
|
32 |
+
label: Union[None, str] = None,
|
33 |
+
) -> str:
|
34 |
+
# returns the full prompt from instruction and optional input
|
35 |
+
# if a label (=response, =output) is provided, it's also appended.
|
36 |
+
if input:
|
37 |
+
res = self.template["prompt_input"].format(
|
38 |
+
instruction=instruction, input=input
|
39 |
+
)
|
40 |
+
else:
|
41 |
+
res = self.template["prompt_no_input"].format(
|
42 |
+
instruction=instruction
|
43 |
+
)
|
44 |
+
if label:
|
45 |
+
res = f"{res}{label}"
|
46 |
+
if self._verbose:
|
47 |
+
print(res)
|
48 |
+
return res
|
49 |
+
|
50 |
+
def get_response(self, output: str) -> str:
|
51 |
+
return output.split(self.template["response_split"])[1].strip()
|
webui.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import fire
|
5 |
+
import gradio as gr
|
6 |
+
import torch
|
7 |
+
import transformers
|
8 |
+
from peft import PeftModel
|
9 |
+
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, AutoModel, AutoTokenizer, AutoModelForCausalLM,AutoConfig
|
10 |
+
|
11 |
+
from utils.callbacks import Iteratorize, Stream
|
12 |
+
from utils.prompter import Prompter
|
13 |
+
|
14 |
+
# if torch.cuda.is_available():
|
15 |
+
# device = "cuda"
|
16 |
+
# else:
|
17 |
+
# device = "cpu"
|
18 |
+
|
19 |
+
# try:
|
20 |
+
# if torch.backends.mps.is_available():
|
21 |
+
# device = "mps"
|
22 |
+
# except:
|
23 |
+
# pass
|
24 |
+
|
25 |
+
device = "xpu"
|
26 |
+
|
27 |
+
|
28 |
+
def main(
|
29 |
+
load_8bit: bool = False,
|
30 |
+
base_model: str = "",
|
31 |
+
lora_weights: str = "",
|
32 |
+
prompt_template: str = "", # The prompt template to use, will default to alpaca.
|
33 |
+
server_name: str = "0.0.0.0", # Allows to listen on all interfaces by providing '0.
|
34 |
+
share_gradio: bool = False,
|
35 |
+
):
|
36 |
+
base_model = base_model or os.environ.get("BASE_MODEL", "")
|
37 |
+
assert (
|
38 |
+
base_model
|
39 |
+
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
|
40 |
+
|
41 |
+
prompter = Prompter(prompt_template)
|
42 |
+
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
43 |
+
prompter = Prompter(prompt_template)
|
44 |
+
tokenizer = LlamaTokenizer.from_pretrained(base_model)
|
45 |
+
config = AutoConfig.from_pretrained(base_model)
|
46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
47 |
+
base_model,
|
48 |
+
config=config,
|
49 |
+
load_in_8bit=load_8bit,
|
50 |
+
torch_dtype=torch.float16,
|
51 |
+
device_map="auto",
|
52 |
+
)
|
53 |
+
|
54 |
+
try:
|
55 |
+
print(f"Using lora {lora_weights}")
|
56 |
+
model = PeftModel.from_pretrained(
|
57 |
+
model,
|
58 |
+
lora_weights,
|
59 |
+
torch_dtype=torch.float16,
|
60 |
+
)
|
61 |
+
except:
|
62 |
+
print("*"*50, "\n Attention! No Lora Weights \n", "*"*50)
|
63 |
+
|
64 |
+
# unwind broken decapoda-research config
|
65 |
+
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
|
66 |
+
model.config.bos_token_id = 1
|
67 |
+
model.config.eos_token_id = 2
|
68 |
+
|
69 |
+
# if not load_8bit:
|
70 |
+
# model.half() # seems to fix bugs for some users.
|
71 |
+
|
72 |
+
model.eval()
|
73 |
+
if torch.__version__ >= "2" and sys.platform != "win32":
|
74 |
+
model = torch.compile(model)
|
75 |
+
|
76 |
+
def evaluate(
|
77 |
+
instruction,
|
78 |
+
# input=None,
|
79 |
+
temperature=0.1,
|
80 |
+
top_p=0.75,
|
81 |
+
top_k=40,
|
82 |
+
num_beams=4,
|
83 |
+
max_new_tokens=128,
|
84 |
+
stream_output=False,
|
85 |
+
**kwargs,
|
86 |
+
):
|
87 |
+
input=None
|
88 |
+
prompt = prompter.generate_prompt(instruction, input)
|
89 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
90 |
+
input_ids = inputs["input_ids"].to(device)
|
91 |
+
generation_config = GenerationConfig(
|
92 |
+
temperature=temperature,
|
93 |
+
top_p=top_p,
|
94 |
+
top_k=top_k,
|
95 |
+
num_beams=num_beams,
|
96 |
+
**kwargs,
|
97 |
+
)
|
98 |
+
|
99 |
+
generate_params = {
|
100 |
+
"input_ids": input_ids,
|
101 |
+
"generation_config": generation_config,
|
102 |
+
"return_dict_in_generate": True,
|
103 |
+
"output_scores": True,
|
104 |
+
"max_new_tokens": max_new_tokens,
|
105 |
+
}
|
106 |
+
|
107 |
+
if stream_output:
|
108 |
+
# Stream the reply 1 token at a time.
|
109 |
+
# This is based on the trick of using 'stopping_criteria' to create an iterator,
|
110 |
+
# from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243.
|
111 |
+
|
112 |
+
def generate_with_callback(callback=None, **kwargs):
|
113 |
+
kwargs.setdefault(
|
114 |
+
"stopping_criteria", transformers.StoppingCriteriaList()
|
115 |
+
)
|
116 |
+
kwargs["stopping_criteria"].append(
|
117 |
+
Stream(callback_func=callback)
|
118 |
+
)
|
119 |
+
with torch.no_grad():
|
120 |
+
model.generate(**kwargs)
|
121 |
+
|
122 |
+
def generate_with_streaming(**kwargs):
|
123 |
+
return Iteratorize(
|
124 |
+
generate_with_callback, kwargs, callback=None
|
125 |
+
)
|
126 |
+
|
127 |
+
with generate_with_streaming(**generate_params) as generator:
|
128 |
+
for output in generator:
|
129 |
+
# new_tokens = len(output) - len(input_ids[0])
|
130 |
+
decoded_output = tokenizer.decode(output)
|
131 |
+
|
132 |
+
if output[-1] in [tokenizer.eos_token_id]:
|
133 |
+
break
|
134 |
+
|
135 |
+
yield prompter.get_response(decoded_output)
|
136 |
+
print(decoded_output)
|
137 |
+
return # early return for stream_output
|
138 |
+
|
139 |
+
# Without streaming
|
140 |
+
with torch.no_grad():
|
141 |
+
generation_output = model.generate(
|
142 |
+
input_ids=input_ids,
|
143 |
+
generation_config=generation_config,
|
144 |
+
return_dict_in_generate=True,
|
145 |
+
output_scores=True,
|
146 |
+
max_new_tokens=max_new_tokens,
|
147 |
+
)
|
148 |
+
s = generation_output.sequences[0]
|
149 |
+
output = tokenizer.decode(s)
|
150 |
+
print(output)
|
151 |
+
yield prompter.get_response(output)
|
152 |
+
|
153 |
+
gr.Interface(
|
154 |
+
fn=evaluate,
|
155 |
+
inputs=[
|
156 |
+
gr.components.Textbox(
|
157 |
+
lines=2,
|
158 |
+
label="Instruction",
|
159 |
+
placeholder="ๆญคๅค่พๅ
ฅๆณๅพ็ธๅ
ณ้ฎ้ข",
|
160 |
+
),
|
161 |
+
# gr.components.Textbox(lines=2, label="Input", placeholder="none"),
|
162 |
+
gr.components.Slider(
|
163 |
+
minimum=0, maximum=1, value=0.1, label="Temperature"
|
164 |
+
),
|
165 |
+
gr.components.Slider(
|
166 |
+
minimum=0, maximum=1, value=0.75, label="Top p"
|
167 |
+
),
|
168 |
+
gr.components.Slider(
|
169 |
+
minimum=0, maximum=100, step=1, value=40, label="Top k"
|
170 |
+
),
|
171 |
+
gr.components.Slider(
|
172 |
+
minimum=1, maximum=4, step=1, value=1, label="Beams"
|
173 |
+
),
|
174 |
+
gr.components.Slider(
|
175 |
+
minimum=1, maximum=2000, step=1, value=256, label="Max tokens"
|
176 |
+
),
|
177 |
+
gr.components.Checkbox(label="Stream output", value=True),
|
178 |
+
],
|
179 |
+
outputs=[
|
180 |
+
gr.inputs.Textbox(
|
181 |
+
lines=8,
|
182 |
+
label="Output",
|
183 |
+
)
|
184 |
+
],
|
185 |
+
title="๐ฆ๐ฒ LaWGPT",
|
186 |
+
description="",
|
187 |
+
).queue().launch(server_name="0.0.0.0", share=share_gradio)
|
188 |
+
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
fire.Fire(main)
|