File size: 10,212 Bytes
1ee3bf0 c644570 1ee3bf0 f280910 c4e3a54 1ee3bf0 f280910 f0e6b7a f280910 a6167b6 f280910 2ec69c0 1ee3bf0 a6167b6 9dd235f 1ee3bf0 9dd235f e4ea387 9dd235f f0e6b7a 2ec69c0 1ee3bf0 33469f8 cad6ebe a750c0e c4e3a54 a750c0e c4e3a54 a750c0e c4e3a54 a750c0e 6e5a323 3c77757 9dd235f e5080ee f280910 e5080ee 9dd235f 2ec69c0 3722f7e 9dd235f f280910 f0e6b7a 9dd235f 2ec69c0 e5080ee 2ec69c0 3c77757 f280910 1ee3bf0 33469f8 1ee3bf0 33469f8 1ee3bf0 33469f8 1ee3bf0 33469f8 1ee3bf0 b2c85ec 33469f8 f280910 3e48ac3 33469f8 3c77757 1ee3bf0 e4ea387 33469f8 1ee3bf0 f280910 33469f8 1ee3bf0 33469f8 737d099 33469f8 1ee3bf0 63b8dde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gradio as gr
import torch
from diffusers import AutoPipelineForInpainting
import diffusers
from share_btn import community_icon_html, loading_icon_html, share_js
from sdxl import sdxl_diffusion_loop
from sdxl_models import SDXLUNet, SDXLVae, SDXLControlNetPreEncodedControlnetCond
import torchvision.transforms.functional as TF
from diffusion import make_sigmas, set_with_tqdm
from huggingface_hub import hf_hub_download
import gc
set_with_tqdm(True)
pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16")
pipe.text_encoder.to("cuda")
pipe.text_encoder_2.to("cuda")
comparing_unet = SDXLUNet.load(hf_hub_download("stabilityai/stable-diffusion-xl-base-1.0", "unet/diffusion_pytorch_model.fp16.safetensors"))
comparing_vae = SDXLVae.load(hf_hub_download("madebyollin/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors"))
comparing_vae.to(torch.float16)
comparing_controlnet = SDXLControlNetPreEncodedControlnetCond.load(hf_hub_download("williamberman/sdxl_controlnet_inpainting", "sdxl_controlnet_inpaint_pre_encoded_controlnet_cond_checkpoint_200000.safetensors"))
comparing_controlnet.to(torch.float16)
gc.collect()
torch.cuda.empty_cache()
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def predict(dict, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
if negative_prompt == "":
negative_prompt = None
scheduler_class_name = scheduler.split("-")[0]
add_kwargs = {}
if len(scheduler.split("-")) > 1:
add_kwargs["use_karras"] = True
if len(scheduler.split("-")) > 2:
add_kwargs["algorithm_type"] = "sde-dpmsolver++"
scheduler = getattr(diffusers, scheduler_class_name)
pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs)
init_image = dict["image"].convert("RGB").resize((1024, 1024))
mask = dict["mask"].convert("RGB").resize((1024, 1024))
pipe.vae.to('cuda')
pipe.unet.to('cuda')
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
pipe.vae.to('cpu')
pipe.unet.to('cpu')
gc.collect()
torch.cuda.empty_cache()
comparing_vae.to('cuda')
comparing_unet.to('cuda')
comparing_controlnet.to('cuda')
image = TF.to_tensor(dict["image"].convert("RGB").resize((1024, 1024)))
mask = TF.to_tensor(dict["mask"].convert("L").resize((1024, 1024)))
image = image * (mask < 0.5)
image = TF.normalize(image, [0.5], [0.5])
image = comparing_vae.encode(image[None, :, :, :].to(dtype=comparing_vae.dtype, device=comparing_vae.device)).to(dtype=comparing_controlnet.dtype, device=comparing_controlnet.device)
mask = TF.resize(mask, (1024 // 8, 1024 // 8))[None, :, :, :].to(dtype=image.dtype, device=image.device)
image = torch.concat((image, mask), dim=1)
sigmas = make_sigmas(device=comparing_unet.device).to(dtype=comparing_unet.dtype)
timesteps = torch.linspace(0, sigmas.numel() - 1, int(steps), dtype=torch.long, device=comparing_unet.device)
out = sdxl_diffusion_loop(
prompts=prompt, negative_prompts=negative_prompt, images=image, guidance_scale=guidance_scale, sigmas=sigmas, timesteps=timesteps,
text_encoder_one=pipe.text_encoder, text_encoder_two=pipe.text_encoder_2, unet=comparing_unet, controlnet=comparing_controlnet
)
comparing_unet.to('cpu')
comparing_controlnet.to('cpu')
gc.collect()
torch.cuda.empty_cache()
out = comparing_vae.output_tensor_to_pil(comparing_vae.decode(out))
comparing_vae.to('cpu')
gc.collect()
torch.cuda.empty_cache()
return output.images[0], out[0], gr.update(visible=True)
css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''
image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
gr.HTML(read_content("header.html"))
with gr.Row():
with gr.Column():
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload",height=400)
with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
with gr.Row():
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
btn = gr.Button("Inpaint!", elem_id="run_button")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(mobile_collapse=False, equal_height=True):
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
steps = gr.Number(value=20, minimum=1, maximum=1000, step=1, label="steps")
strength = gr.Number(value=0.99, minimum=0.01, maximum=1.0, step=0.01, label="strength")
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
with gr.Row(mobile_collapse=False, equal_height=True):
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
with gr.Column():
image_out = gr.Image(label="Output diffusers full finetune 0.1", elem_id="output-img", height=400)
image_out_comparing = gr.Image(label="Output controlnet + vae", elem_id="output-img-comparing", height=400)
with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)
btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, image_out_comparing, share_btn_container], api_name='run')
prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, image_out_comparing, share_btn_container])
share_button.click(None, [], [], _js=share_js)
gr.Examples(
examples=[
["./imgs/aaa (8).png"],
["./imgs/download (1).jpeg"],
["./imgs/0_oE0mLhfhtS_3Nfm2.png"],
["./imgs/02_HubertyBlog-1-1024x1024.jpg"],
["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"],
["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"],
["./imgs/canam-electric-motorcycles-scaled.jpg"],
["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"],
["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"],
["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"],
],
fn=predict,
inputs=[image],
cache_examples=False,
)
gr.HTML(
"""
<div class="footer">
<p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
</p>
</div>
"""
)
image_blocks.queue(max_size=25).launch() |