williamberman
commited on
Commit
·
9dd235f
1
Parent(s):
91fa361
move models
Browse files
app.py
CHANGED
@@ -10,13 +10,14 @@ import torchvision.transforms.functional as TF
|
|
10 |
from diffusion import make_sigmas
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
13 |
-
|
14 |
-
pipe
|
|
|
15 |
|
16 |
-
comparing_unet = SDXLUNet.load(hf_hub_download("stabilityai/stable-diffusion-xl-base-1.0", "unet/diffusion_pytorch_model.fp16.safetensors")
|
17 |
-
comparing_vae = SDXLVae.load(hf_hub_download("madebyollin/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors")
|
18 |
comparing_vae.to(torch.float16)
|
19 |
-
comparing_controlnet = SDXLControlNetPreEncodedControlnetCond.load(hf_hub_download("williamberman/sdxl_controlnet_inpainting", "sdxl_controlnet_inpaint_pre_encoded_controlnet_cond_checkpoint_200000.safetensors")
|
20 |
comparing_controlnet.to(torch.float16)
|
21 |
|
22 |
def read_content(file_path: str) -> str:
|
@@ -44,7 +45,17 @@ def predict(dict, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, s
|
|
44 |
init_image = dict["image"].convert("RGB").resize((1024, 1024))
|
45 |
mask = dict["mask"].convert("RGB").resize((1024, 1024))
|
46 |
|
|
|
|
|
|
|
47 |
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
image = TF.to_tensor(dict["image"].convert("RGB").resize((1024, 1024)))
|
50 |
mask = TF.to_tensor(dict["mask"].convert("L").resize((1024, 1024)))
|
@@ -62,6 +73,10 @@ def predict(dict, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, s
|
|
62 |
text_encoder_one=pipe.text_encoder, text_encoder_two=pipe.text_encoder_2, unet=comparing_unet, controlnet=comparing_controlnet
|
63 |
)
|
64 |
out = comparing_vae.output_tensor_to_pil(comparing_vae.decode(out))
|
|
|
|
|
|
|
|
|
65 |
|
66 |
return output.images[0], out[0], gr.update(visible=True)
|
67 |
|
|
|
10 |
from diffusion import make_sigmas
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
|
13 |
+
pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16")
|
14 |
+
pipe.text_encoder.to("cuda")
|
15 |
+
pipe.text_encoder_2.to("cuda")
|
16 |
|
17 |
+
comparing_unet = SDXLUNet.load(hf_hub_download("stabilityai/stable-diffusion-xl-base-1.0", "unet/diffusion_pytorch_model.fp16.safetensors"))
|
18 |
+
comparing_vae = SDXLVae.load(hf_hub_download("madebyollin/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors"))
|
19 |
comparing_vae.to(torch.float16)
|
20 |
+
comparing_controlnet = SDXLControlNetPreEncodedControlnetCond.load(hf_hub_download("williamberman/sdxl_controlnet_inpainting", "sdxl_controlnet_inpaint_pre_encoded_controlnet_cond_checkpoint_200000.safetensors"))
|
21 |
comparing_controlnet.to(torch.float16)
|
22 |
|
23 |
def read_content(file_path: str) -> str:
|
|
|
45 |
init_image = dict["image"].convert("RGB").resize((1024, 1024))
|
46 |
mask = dict["mask"].convert("RGB").resize((1024, 1024))
|
47 |
|
48 |
+
pipe.vae.to('cuda')
|
49 |
+
pipe.unet.to('cuda')
|
50 |
+
pipe.controlnet.to('cuda')
|
51 |
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
|
52 |
+
pipe.vae.to('cpu')
|
53 |
+
pipe.unet.to('cpu')
|
54 |
+
pipe.controlnet.to('cpu')
|
55 |
+
|
56 |
+
comparing_unet.to('cuda')
|
57 |
+
comparing_vae.to('cuda')
|
58 |
+
comparing_controlnet.to('cuda')
|
59 |
|
60 |
image = TF.to_tensor(dict["image"].convert("RGB").resize((1024, 1024)))
|
61 |
mask = TF.to_tensor(dict["mask"].convert("L").resize((1024, 1024)))
|
|
|
73 |
text_encoder_one=pipe.text_encoder, text_encoder_two=pipe.text_encoder_2, unet=comparing_unet, controlnet=comparing_controlnet
|
74 |
)
|
75 |
out = comparing_vae.output_tensor_to_pil(comparing_vae.decode(out))
|
76 |
+
|
77 |
+
comparing_unet.to('cpu')
|
78 |
+
comparing_vae.to('cpu')
|
79 |
+
comparing_controlnet.to('cpu')
|
80 |
|
81 |
return output.images[0], out[0], gr.update(visible=True)
|
82 |
|