Spaces:
Runtime error
Runtime error
File size: 27,598 Bytes
1a2c8b5 b34b4e8 1a2c8b5 a110291 1a2c8b5 b34b4e8 1a2c8b5 ba508b5 8623f65 ba508b5 1a2c8b5 ba508b5 8623f65 ba508b5 8623f65 ba508b5 8623f65 b34b4e8 ba508b5 b34b4e8 ba508b5 8623f65 ba508b5 8623f65 ba508b5 8623f65 ba508b5 1a2c8b5 ba508b5 1a2c8b5 ba508b5 1a2c8b5 ba508b5 1a2c8b5 ba508b5 1a2c8b5 b34b4e8 ba508b5 b34b4e8 ba508b5 b34b4e8 ba508b5 76c83ed ba508b5 1a2c8b5 ba508b5 b34b4e8 ba508b5 b34b4e8 ba508b5 b34b4e8 ba508b5 b34b4e8 ba508b5 b34b4e8 ba508b5 b34b4e8 ba508b5 b34b4e8 ba508b5 b34b4e8 ba508b5 b34b4e8 ba508b5 76c83ed b34b4e8 76c83ed b34b4e8 76c83ed b34b4e8 76c83ed b34b4e8 76c83ed b34b4e8 76c83ed ba508b5 b34b4e8 8623f65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
from diffusers.utils.torch_utils import randn_tensor
# suppress partial model loading warning
logging.set_verbosity_error()
import os
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import argparse
from torchvision.io import write_video
from pathlib import Path
from utils import *
import torchvision.transforms as T
import cv2
import numpy as np
def get_timesteps(scheduler, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
class Preprocess(nn.Module):
def __init__(self, device, opt, vae, tokenizer, text_encoder, unet,scheduler, hf_key=None):
super().__init__()
self.device = device
self.sd_version = opt["sd_version"]
self.use_depth = False
self.config = opt
print(f'[INFO] loading stable diffusion...')
if hf_key is not None:
print(f'[INFO] using hugging face custom model key: {hf_key}')
model_key = hf_key
elif self.sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif self.sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif self.sd_version == '1.5' or self.sd_version == 'ControlNet':
model_key = "runwayml/stable-diffusion-v1-5"
elif self.sd_version == 'depth':
model_key = "stabilityai/stable-diffusion-2-depth"
else:
raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
self.model_key = model_key
# Create model
# self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
# torch_dtype=torch.float16).to(self.device)
# self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
# self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
# torch_dtype=torch.float16).to(self.device)
# self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
# torch_dtype=torch.float16).to(self.device)
self.vae = vae
self.tokenizer = tokenizer
self.text_encoder = text_encoder
self.unet = unet
self.scheduler=scheduler
self.total_inverted_latents = {}
self.noise_total = None # will contain all zs if inversion == 'ddpm', var name chosen to match the save path of zs used in pr https://github.com/omerbt/TokenFlow/pull/24/files#
self.paths, self.frames, self.latents = self.get_data(self.config["data_path"], self.config["n_frames"])
print("self.frames", self.frames.shape)
print("self.latents", self.latents.shape)
if self.sd_version == 'ControlNet':
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to(self.device)
control_pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
).to(self.device)
self.unet = control_pipe.unet
self.controlnet = control_pipe.controlnet
self.canny_cond = self.get_canny_cond()
elif self.sd_version == 'depth':
self.depth_maps = self.prepare_depth_maps()
self.scheduler = scheduler
self.unet.enable_xformers_memory_efficient_attention()
print(f'[INFO] loaded stable diffusion!')
@torch.no_grad()
def prepare_depth_maps(self, model_type='DPT_Large', device='cuda'):
depth_maps = []
midas = torch.hub.load("intel-isl/MiDaS", model_type)
midas.to(device)
midas.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
transform = midas_transforms.dpt_transform
else:
transform = midas_transforms.small_transform
for i in range(len(self.paths)):
img = cv2.imread(self.paths[i])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
latent_h = img.shape[0] // 8
latent_w = img.shape[1] // 8
input_batch = transform(img).to(device)
prediction = midas(input_batch)
depth_map = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=(latent_h, latent_w),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
depth_maps.append(depth_map)
return torch.cat(depth_maps).to(self.device).to(torch.float16)
@torch.no_grad()
def get_canny_cond(self):
canny_cond = []
for image in self.frames.cpu().permute(0, 2, 3, 1):
image = np.uint8(np.array(255 * image))
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = torch.from_numpy((image.astype(np.float32) / 255.0))
canny_cond.append(image)
canny_cond = torch.stack(canny_cond).permute(0, 3, 1, 2).to(self.device).to(torch.float16)
return canny_cond
def controlnet_pred(self, latent_model_input, t, text_embed_input, controlnet_cond):
down_block_res_samples, mid_block_res_sample = self.controlnet(
latent_model_input,
t,
encoder_hidden_states=text_embed_input,
controlnet_cond=controlnet_cond,
conditioning_scale=1,
return_dict=False,
)
# apply the denoising network
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=text_embed_input,
cross_attention_kwargs={},
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
return_dict=False,
)[0]
return noise_pred
@torch.no_grad()
def encode_text(self, prompts, device=None):
if device is None:
device = self.device
text_inputs = self.tokenizer(
prompts,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length:])
print(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(device))[0]
return text_embeddings
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
text_embeddings = self.encode_text(prompt, device=device)
uncond_embeddings = self.encode_text(negative_prompt, device=device)
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def decode_latents(self, latents):
decoded = []
batch_size = 8
for b in range(0, latents.shape[0], batch_size):
latents_batch = 1 / 0.18215 * latents[b:b + batch_size]
imgs = self.vae.decode(latents_batch).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
decoded.append(imgs)
return torch.cat(decoded)
@torch.no_grad()
def encode_imgs(self, imgs, batch_size=10, deterministic=True):
imgs = 2 * imgs - 1
latents = []
for i in range(0, len(imgs), batch_size):
posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
latent = posterior.mean if deterministic else posterior.sample()
latents.append(latent * self.vae.config.scaling_factor)
latents = torch.cat(latents)
return latents
def get_data(self, frames_path, n_frames):
# load frames
if not self.config["frames"]:
paths = [f"{frames_path}/%05d.png" % i for i in range(n_frames)]
print(paths)
if not os.path.exists(paths[0]):
paths = [f"{frames_path}/%05d.jpg" % i for i in range(n_frames)]
self.paths = paths
frames = [Image.open(path).convert('RGB') for path in paths]
if frames[0].size[0] == frames[0].size[1]:
frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
else:
frames = self.config["frames"][:n_frames]
frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
# encode to latents
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
print("frames", frames.shape)
print("latents", latents.shape)
if not self.config["frames"]:
return paths, frames, latents
else:
return None, frames, latents
@torch.no_grad()
def ddim_inversion(self, cond, latent_frames, save_path, batch_size, save_latents=True, timesteps_to_save=None):
timesteps = reversed(self.scheduler.timesteps)
timesteps_to_save = timesteps_to_save if timesteps_to_save is not None else timesteps
return_inverted_latents = self.config["frames"] is not None
for i, t in enumerate(tqdm(timesteps)):
for b in range(0, latent_frames.shape[0], int(batch_size)):
x_batch = latent_frames[b:b + batch_size]
model_input = x_batch
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
if self.sd_version == 'depth':
depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
model_input = torch.cat([x_batch, depth_maps],dim=1)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
pred_x0 = (x_batch - sigma_prev * eps) / mu_prev
latent_frames[b:b + batch_size] = mu * pred_x0 + sigma * eps
if return_inverted_latents and t in timesteps_to_save:
self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
if save_latents and t in timesteps_to_save:
torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
if save_latents:
torch.save(latent_frames, os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
if return_inverted_latents:
self.total_inverted_latents[f'noisy_latents_{t}'] = latent_frames.clone()
return latent_frames
@torch.no_grad()
def ddpm_inversion(self, cond,
latent_frames,
batch_size,
num_inversion_steps,
save_path=None,
save_latents=True,
eta: float = 1.0,
skip_steps=20):
timesteps = self.scheduler.timesteps
return_inverted_latents = self.config["frames"] is not None
variance_noise_shape = (
num_inversion_steps,
*latent_frames.shape)
x0 = latent_frames
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=cond.dtype)
for t in reversed(timesteps):
idx = t_to_idx[int(t)]
for b in range(0, x0.shape[0], batch_size):
x_batch = x0[b:b + batch_size]
noise = randn_tensor(shape=x_batch.shape, device=self.device, dtype=x0.dtype)
xts[idx, b:b + batch_size] = self.scheduler.add_noise(x_batch, noise, t)
xts = torch.cat([xts, x0.unsqueeze(0)], dim=0)
zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=cond.dtype)
for t in tqdm(timesteps):
idx = t_to_idx[int(t)]
# 1. predict noise residual
for b in range(0, x0.shape[0], batch_size):
xt = xts[idx, b:b + batch_size]
cond_batch = cond.repeat(xt.shape[0], 1, 1)
noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=cond_batch).sample
xtm1 = xts[idx + 1, b:b + batch_size]
z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, eta)
zs[idx, b:b + batch_size] = z
# correction to avoid error accumulation
xts[idx + 1, b:b + batch_size] = xtm1_corrected
if save_latents:
torch.save(xts[idx], os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
if return_inverted_latents:
self.total_inverted_latents[f'noisy_latents_{t}'] = xts[idx].clone()
if save_path:
torch.save(xts[idx], os.path.join(save_path, 'latents', f'noisy_latents_{t}.pt'))
torch.save(zs, os.path.join(save_path, 'latents', f'noise_total.pt'))
if return_inverted_latents:
self.total_inverted_latents[f'noisy_latents_{t}'] = xts[idx].clone()
self.noise_total = zs.clone()
return xts[skip_steps].expand(latent_frames.shape[0], -1, -1, -1), zs
def prepare_extra_step_kwargs(self, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
return extra_step_kwargs
@torch.no_grad()
def ddpm_sample(self, init_latents, cond, batch_size, num_inversion_steps, skip_steps, eta, zs_all,
guidance_scale=0):
use_ddpm = True
do_classifier_free_guidance = guidance_scale > 1.0
total_latents = init_latents
self.scheduler.set_timesteps(num_inversion_steps, device=device)
timesteps = self.scheduler.timesteps
zs_total = zs_all[skip_steps:]
if use_ddpm:
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs_total.shape[0]:])}
timesteps = timesteps[-zs_total.shape[0]:]
num_warmup_steps = len(timesteps) - num_inversion_steps * self.scheduler.order
extra_step_kwargs = self.prepare_extra_step_kwargs(eta)
for i, t in enumerate(tqdm(timesteps)):
for b in range(0, total_latents.shape[0], batch_size):
latents = total_latents[b:b + batch_size]
if do_classifier_free_guidance:
latent_model_input = torch.cat([latents] * 2)
else:
latent_model_input = latents
cond_batch = cond.repeat(latents.shape[0], 1, 1)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=cond_batch,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_pred_out = noise_pred.chunk(2) # [b,4, 64, 64]
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
# default text guidance
noise_guidance = guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = noise_pred_uncond + noise_guidance
idx = t_to_idx[int(t)]
zs = zs_total[idx, b:b + batch_size]
latents = self.scheduler.step(noise_pred, t, latents, variance_noise=zs,
**extra_step_kwargs).prev_sample
total_latents[b:b + batch_size] = latents
return total_latents
@torch.no_grad()
def ddim_sample(self, x, cond, batch_size):
timesteps = self.scheduler.timesteps
for i, t in enumerate(tqdm(timesteps)):
for b in range(0, x.shape[0], batch_size):
x_batch = x[b:b + batch_size]
model_input = x_batch
cond_batch = cond.repeat(x_batch.shape[0], 1, 1)
if self.sd_version == 'depth':
depth_maps = torch.cat([self.depth_maps[b: b + batch_size]])
model_input = torch.cat([x_batch, depth_maps],dim=1)
alpha_prod_t = self.scheduler.alphas_cumprod[t]
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i + 1]]
if i < len(timesteps) - 1
else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
eps = self.unet(model_input, t, encoder_hidden_states=cond_batch).sample if self.sd_version != 'ControlNet' \
else self.controlnet_pred(x_batch, t, cond_batch, torch.cat([self.canny_cond[b: b + batch_size]]))
pred_x0 = (x_batch - sigma * eps) / mu
x[b:b + batch_size] = mu_prev * pred_x0 + sigma_prev * eps
return x
@torch.no_grad()
def extract_latents(self,
num_steps,
save_path,
batch_size,
timesteps_to_save,
inversion_prompt='',
skip_steps=20,
inversion_type='ddim',
eta=1.0,
reconstruction=False):
self.scheduler.set_timesteps(num_steps)
cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
latent_frames = self.latents
if inversion_type == 'ddim':
inverted_x= self.ddim_inversion(cond,
latent_frames,
save_path,
batch_size=batch_size,
save_latents=True if save_path else False,
timesteps_to_save=timesteps_to_save)
if reconstruction:
latent_reconstruction = self.ddim_sample(inverted_x, cond, batch_size=batch_size)
rgb_reconstruction = self.decode_latents(latent_reconstruction)
return (self.frames, self.latents, self.total_inverted_latents), rgb_reconstruction
else:
return (self.frames, self.latents, self.total_inverted_latents), None
elif inversion_type == 'ddpm':
inverted_x, zs = self.ddpm_inversion(cond,
latent_frames,
save_path= save_path,
batch_size=batch_size,
save_latents=True if save_path else False,
num_inversion_steps=num_steps,
eta=eta,
skip_steps=skip_steps)
cond = self.encode_text(inversion_prompt)
if reconstruction:
latent_reconstruction = self.ddpm_sample(init_latents=inverted_x,
cond=cond, batch_size=batch_size,
num_inversion_steps=num_steps, skip_steps=skip_steps,
eta=eta, zs_all=zs)
rgb_reconstruction = self.decode_latents(latent_reconstruction)
return (self.frames, self.latents, self.total_inverted_latents, self.noise_total), rgb_reconstruction
else:
return (self.frames, self.latents, self.total_inverted_latents, self.noise_total), None
else:
raise NotImplementedError()
def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta):
# 1. get previous step value (=t-1)
prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = (
scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
)
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
# 4. Clip "predicted x_0"
if scheduler.config.clip_sample:
pred_original_sample = torch.clamp(pred_original_sample, -1, 1)
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
variance = scheduler._get_variance(timestep, prev_timestep)
std_dev_t = eta * variance ** (0.5)
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t ** 2) ** (0.5) * noise_pred
# modifed so that updated xtm1 is returned as well (to avoid error accumulation)
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
return noise, mu_xt + (eta * variance ** 0.5) * noise
def prep(opt):
# timesteps to save
if opt["sd_version"] == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif opt["sd_version"] == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif opt["sd_version"] == '1.5' or opt["sd_version"] == 'ControlNet':
model_key = "runwayml/stable-diffusion-v1-5"
elif opt["sd_version"] == 'depth':
model_key = "stabilityai/stable-diffusion-2-depth"
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
toy_scheduler.set_timesteps(opt["save_steps"])
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=opt["save_steps"],
strength=1.0,
device=device)
seed_everything(opt["seed"])
if not opt["frames"]: # original non demo setting
save_path = os.path.join(opt["save_dir"],
f'inversion_{opt[inversion]}',
f'sd_{opt["sd_version"]}',
Path(opt["data_path"]).stem,
f'steps_{opt["steps"]}',
f'nframes_{opt["n_frames"]}')
os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
if opt[inversion] == 'ddpm':
os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
add_dict_to_yaml_file(os.path.join(opt["save_dir"], 'inversion_prompts.yaml'), Path(opt["data_path"]).stem, opt["inversion_prompt"])
# save inversion prompt in a txt file
with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
f.write(opt["inversion_prompt"])
else:
save_path = None
model = Preprocess(device,
config,
vae=vae,
text_encoder=text_encoder,
scheduler=scheduler,
tokenizer=tokenizer,
unet=unet)
frames_and_latents, rgb_reconstruction = model.extract_latents(
num_steps=model.config["steps"],
save_path=save_path,
batch_size=model.config["batch_size"],
timesteps_to_save=timesteps_to_save,
inversion_prompt=model.config["inversion_prompt"],
inversion_type=model.config[inversion],
skip_steps=model.config[skip_steps],
reconstruction=model.config[reconstruct]
)
if model.config[inversion] == 'ddpm':
frames, latents, total_inverted_latents, zs = frames_and_latents
return frames, latents, total_inverted_latents, zs, rgb_reconstruction
else:
frames, latents, total_inverted_latents = frames_and_latents
return frames, latents, total_inverted_latents, rgb_reconstruction
|