Spaces:
Runtime error
Runtime error
File size: 18,095 Bytes
68aadbb 87e3aec 32fdae0 0a3b392 99731b2 a70f4ae 87e3aec e5a71e9 dcf7f47 e5a71e9 87e3aec dcf7f47 6b46943 dcf7f47 68aadbb 3fc6280 90bd936 39b1e18 90bd936 773bed3 90bd936 4e5195b a70f4ae 4e5195b 0b1c448 4e5195b 0b1c448 39b1e18 4e5195b 3fc6280 e5a71e9 4e5195b 536f1c7 ba346b2 ddf693e 536f1c7 4e5195b 68aadbb 0b1c448 aae61bd 68aadbb a70f4ae 1b86f61 4e5195b 87e3aec 4e5195b 0b1c448 68aadbb 4e5195b 0b1c448 4ceeb5d 4e5195b 536f1c7 4e5195b 536f1c7 e9ae397 536f1c7 68aadbb 4e5195b 0b1c448 68aadbb 4e5195b 68aadbb 87e3aec ddf693e 4e5195b 87e3aec 4e5195b a70f4ae 4e5195b 025dc29 8a26b9c 4e5195b 0b1c448 4e5195b 536f1c7 4e5195b a70f4ae 4e5195b 0b1c448 4e5195b a70f4ae 4e5195b a70f4ae 4e5195b e62a915 4e5195b 87e3aec 025dc29 4e5195b 87e3aec d7d00c9 e079314 d7d00c9 bcd02b9 d7d00c9 e079314 26aac29 e079314 d7d00c9 68aadbb d7d00c9 4e5195b 4588985 4e5195b 4588985 dd28623 d7d00c9 68aadbb d7d00c9 68aadbb 4e5195b 096ac3e 4e5195b 0b1c448 4e5195b a70f4ae 7d42e44 a70f4ae b1af849 0b1c448 025dc29 096ac3e 025dc29 096ac3e 4e5195b 096ac3e 4e5195b 68aadbb 1b86f61 4e5195b 68aadbb db10df2 4e5195b 68aadbb ddf693e 4e5195b 68aadbb aae61bd 68aadbb a70f4ae 68aadbb a70f4ae ddf693e 68aadbb ddf693e 4e5195b a70f4ae 4e5195b 025dc29 4e5195b d7d00c9 735c4a0 286f8ab 735c4a0 39b1e18 d7d00c9 c06160a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler
from utils import video_to_frames, add_dict_to_yaml_file, save_video, seed_everything
# from diffusers.utils import export_to_video
from tokenflow_pnp import TokenFlow
from preprocess_utils import *
from tokenflow_utils import *
import math
# load sd model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "stabilityai/stable-diffusion-2-1-base"
# components for the Preprocessor
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae", revision="fp16",
torch_dtype=torch.float16).to(device)
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", revision="fp16",
torch_dtype=torch.float16).to(device)
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", revision="fp16",
torch_dtype=torch.float16).to(device)
# pipe for TokenFlow
tokenflow_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
tokenflow_pipe.enable_xformers_memory_efficient_attention()
def randomize_seed_fn():
seed = random.randint(0, np.iinfo(np.int32).max)
return seed
def reset_do_inversion():
return True
def get_example():
case = [
[
'examples/wolf.mp4',
],
[
'examples/woman-running.mp4',
],
[
'examples/cutting_bread.mp4',
],
[
'examples/running_dog.mp4',
],
[
'examples/rocket_kittens.mp4'
]
]
return case
def largest_divisor(n):
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return n // i
return n
def prep(config):
# timesteps to save
if config["sd_version"] == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif config["sd_version"] == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif config["sd_version"] == '1.5' or config["sd_version"] == 'ControlNet':
model_key = "runwayml/stable-diffusion-v1-5"
elif config["sd_version"] == 'depth':
model_key = "stabilityai/stable-diffusion-2-depth"
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
toy_scheduler.set_timesteps(config["save_steps"])
print("config[save_steps]", config["save_steps"])
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=config["save_steps"],
strength=1.0,
device=device)
print("YOOOO timesteps to save", timesteps_to_save)
# seed_everything(config["seed"])
if not config["frames"]: # original non demo setting
save_path = os.path.join(config["save_dir"],
f'sd_{config["sd_version"]}',
Path(config["data_path"]).stem,
f'steps_{config["steps"]}',
f'nframes_{config["n_frames"]}')
os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
add_dict_to_yaml_file(os.path.join(config["save_dir"], 'inversion_prompts.yaml'), Path(config["data_path"]).stem, config["inversion_prompt"])
# save inversion prompt in a txt file
with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
f.write(config["inversion_prompt"])
else:
save_path = None
model = Preprocess(device, config,
vae=vae,
text_encoder=text_encoder,
scheduler=scheduler,
tokenizer=tokenizer,
unet=unet)
print(type(model.config["batch_size"]))
frames, latents, total_inverted_latents, rgb_reconstruction = model.extract_latents(
num_steps=model.config["steps"],
save_path=save_path,
batch_size=model.config["batch_size"],
timesteps_to_save=timesteps_to_save,
inversion_prompt=model.config["inversion_prompt"],
)
return frames, latents, total_inverted_latents, rgb_reconstruction
def calculate_fps(input_video, batch_size):
frames, frames_per_second = video_to_frames(input_video)
total_vid_frames = len(frames)
total_vid_duration = total_vid_frames/frames_per_second
if(total_vid_duration < 1):
frames_to_process = total_vid_frames
else:
frames_to_process = int(frames_per_second/n_seconds)
if frames_to_process % batch_size != 0:
batch_size = largest_divisor(batch_size)
print("total vid duration", total_vid_duration)
print("frames to process", frames_to_process)
print("batch size", batch_size)
return frames, batch_size, frames_to_process, None
def preprocess_and_invert(input_video,
frames,
latents,
inverted_latents,
seed,
randomize_seed,
do_inversion,
# save_dir: str = "latents",
steps,
n_timesteps = 50,
batch_size: int = 8,
n_frames: int = 40,
n_seconds: int = 1,
inversion_prompt:str = '',
):
sd_version = "2.1"
height = 512
weidth: int = 512
print("n timesteps", n_timesteps)
if do_inversion or randomize_seed:
preprocess_config = {}
preprocess_config['H'] = height
preprocess_config['W'] = weidth
preprocess_config['save_dir'] = 'latents'
preprocess_config['sd_version'] = sd_version
preprocess_config['steps'] = steps
preprocess_config['batch_size'] = batch_size
preprocess_config['save_steps'] = int(n_timesteps)
preprocess_config['n_frames'] = n_frames
preprocess_config['seed'] = seed
preprocess_config['inversion_prompt'] = inversion_prompt
not_processed = False
if(not frames):
preprocess_config['frames'],frames_per_second = video_to_frames(input_video)
not_processed = True
preprocess_config['data_path'] = input_video.split(".")[0]
if(not_processed):
total_vid_frames = len(preprocess_config['frames'])
total_vid_duration = total_vid_frames/frames_per_second
if(total_vid_duration < 1):
preprocess_config['n_frames'] = total_vid_frames
else:
preprocess_config['n_frames'] = int(frames_per_second/n_seconds)
if preprocess_config['n_frames'] % batch_size != 0:
preprocess_config['batch_size'] = largest_divisor(batch_size)
print("Running with batch size of ", preprocess_config['batch_size'])
print("Total vid frames", preprocess_config['n_frames'])
if randomize_seed:
seed = randomize_seed_fn()
seed_everything(seed)
frames, latents, total_inverted_latents, rgb_reconstruction = prep(preprocess_config)
print(total_inverted_latents.keys())
print(len(total_inverted_latents.keys()))
frames = gr.State(value=frames)
latents = gr.State(value=latents)
inverted_latents = gr.State(value=total_inverted_latents)
do_inversion = False
return frames, latents, inverted_latents, do_inversion, preprocess_config['batch_size'], preprocess_config['n_frames'], None
def edit_with_pnp(input_video,
frames,
latents,
inverted_latents,
seed,
randomize_seed,
do_inversion,
steps,
prompt: str = "a marble sculpture of a woman running, Venus de Milo",
# negative_prompt: str = "ugly, blurry, low res, unrealistic, unaesthetic",
pnp_attn_t: float = 0.5,
pnp_f_t: float = 0.8,
batch_size: int = 8, #needs to be the same as for preprocess
n_frames: int = 40,#needs to be the same as for preprocess
n_seconds: int = 1,
n_timesteps: int = 50,
gudiance_scale: float = 7.5,
inversion_prompt: str = "", #needs to be the same as for preprocess
n_fps: int = 10,
progress=gr.Progress(track_tqdm=True)
):
config = {}
config["sd_version"] = "2.1"
config["device"] = device
config["n_timesteps"] = int(n_timesteps)
config["n_frames"] = n_frames
config["batch_size"] = batch_size
config["guidance_scale"] = gudiance_scale
config["prompt"] = prompt
config["negative_prompt"] = "ugly, blurry, low res, unrealistic, unaesthetic",
config["pnp_attn_t"] = pnp_attn_t
config["pnp_f_t"] = pnp_f_t
config["pnp_inversion_prompt"] = inversion_prompt
print("Running with batch size of ", config['batch_size'])
print("Total vid frames", config['n_frames'])
if do_inversion:
frames, latents, inverted_latents, do_inversion, batch_size, n_frames = preprocess_and_invert(
input_video,
frames,
latents,
inverted_latents,
seed,
randomize_seed,
do_inversion,
steps,
n_timesteps,
batch_size,
n_frames,
n_seconds,
inversion_prompt)
config["batch_size"] = batch_size
config["n_frames"] = n_frames
do_inversion = False
if randomize_seed:
seed = randomize_seed_fn()
seed_everything(seed)
editor = TokenFlow(config=config,pipe=tokenflow_pipe, frames=frames.value, inverted_latents=inverted_latents.value)
edited_frames = editor.edit_video()
save_video(edited_frames, 'tokenflow_PnP_fps_30.mp4', fps=n_fps)
# path = export_to_video(edited_frames)
return 'tokenflow_PnP_fps_30.mp4', frames, latents, inverted_latents, do_inversion
########
# demo #
########
intro = """
<div style="text-align:center">
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
TokenFlow - <small>Temporally consistent video editing</small>
</h1>
<span>[<a target="_blank" href="https://diffusion-tokenflow.github.io">Project page</a>], [<a target="_blank" href="https://github.com/omerbt/TokenFlow">GitHub</a>], [<a target="_blank" href="https://huggingface.co/papers/2307.10373">Paper</a>]</span>
<div style="display:flex; justify-content: center;margin-top: 0.5em">Each edit takes ~5 min <a href="https://huggingface.co/weizmannscience/tokenflow?duplicate=true" target="_blank">
<img style="margin-top: 0em; margin-bottom: 0em; margin-left: 0.5em" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a></div>
</div>
"""
with gr.Blocks(css="style.css") as demo:
gr.HTML(intro)
frames = gr.State()
inverted_latents = gr.State()
latents = gr.State()
do_inversion = gr.State(value=True)
with gr.Row():
input_video = gr.Video(label="Input Video", interactive=True, elem_id="input_video")
output_video = gr.Video(label="Edited Video", interactive=False, elem_id="output_video")
input_video.style(height=365, width=365)
output_video.style(height=365, width=365)
with gr.Row():
prompt = gr.Textbox(
label="Describe your edited video",
max_lines=1, value=""
)
# with gr.Group(visible=False) as share_btn_container:
# with gr.Group(elem_id="share-btn-container"):
# community_icon = gr.HTML(community_icon_html, visible=True)
# loading_icon = gr.HTML(loading_icon_html, visible=False)
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
# with gr.Row():
# inversion_progress = gr.Textbox(visible=False, label="Inversion progress")
with gr.Row():
run_button = gr.Button("Edit your video!", visible=True)
with gr.Accordion("Advanced Options", open=False):
with gr.Tabs() as tabs:
with gr.TabItem('General options'):
with gr.Row():
with gr.Column(min_width=100):
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
gudiance_scale = gr.Slider(label='Guidance Scale', minimum=1, maximum=30,
value=7.5, step=0.5, interactive=True)
steps = gr.Slider(label='Inversion steps', minimum=10, maximum=500,
value=500, step=1, interactive=True)
with gr.Column(min_width=100):
inversion_prompt = gr.Textbox(lines=1, label="Inversion prompt", interactive=True, placeholder="")
batch_size = gr.Slider(label='Batch size', minimum=1, maximum=100,
value=8, step=1, interactive=True, visible=False)
n_frames = gr.Slider(label='Num frames', minimum=2, maximum=200,
value=24, step=1, interactive=True, visible=False)
n_seconds = gr.Slider(label='Num seconds', info="How many seconds of your video to process",
minimum=1, maximum=2, step=1)
n_timesteps = gr.Slider(label='Diffusion steps', minimum=25, maximum=100,
value=50, step=25, interactive=True)
n_fps = gr.Slider(label='Frames per second', minimum=1, maximum=60,
value=10, step=1, interactive=True)
with gr.TabItem('Plug-and-Play Parameters'):
with gr.Column(min_width=100):
pnp_attn_t = gr.Slider(label='pnp attention threshold', minimum=0, maximum=1,
value=0.5, step=0.5, interactive=True)
pnp_f_t = gr.Slider(label='pnp feature threshold', minimum=0, maximum=1,
value=0.8, step=0.05, interactive=True)
input_video.change(
fn = reset_do_inversion,
outputs = [do_inversion],
queue = False)
inversion_prompt.change(
fn = reset_do_inversion,
outputs = [do_inversion],
queue = False)
randomize_seed.change(
fn = reset_do_inversion,
outputs = [do_inversion],
queue = False)
seed.change(
fn = reset_do_inversion,
outputs = [do_inversion],
queue = False)
input_video.upload(
fn = reset_do_inversion,
outputs = [do_inversion],
queue = False).then(fn = calculate_fps, inputs=[input_video, batch_size], outputs=[frames, batch_size, n_frames], queue=False).then(fn = preprocess_and_invert,
inputs = [input_video,
frames,
latents,
inverted_latents,
seed,
randomize_seed,
do_inversion,
steps,
n_timesteps,
batch_size,
n_frames,
n_seconds,
inversion_prompt
],
outputs = [frames,
latents,
inverted_latents,
do_inversion,
batch_size,
n_frames,
run_button
])
input_video.change(fn = calculate_fps, inputs=[input_video, batch_size], outputs=[batch_size, n_frames, run_button], queue=False)
run_button.click(fn = edit_with_pnp,
inputs = [input_video,
frames,
latents,
inverted_latents,
seed,
randomize_seed,
do_inversion,
steps,
prompt,
pnp_attn_t,
pnp_f_t,
batch_size,
n_frames,
n_seconds,
n_timesteps,
gudiance_scale,
inversion_prompt,
n_fps ],
outputs = [output_video, frames, latents, inverted_latents, do_inversion]
)
gr.Examples(
examples=get_example(),
label='Examples',
inputs=[input_video],
outputs=[output_video]
)
demo.queue()
demo.launch() |