Linoy Tsaban commited on
Commit
87e3aec
·
1 Parent(s): 9113152

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py CHANGED
@@ -1,3 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
  ########
 
1
+ import torch
2
+ from diffusers import StableDiffusionPipeline, DDIMScheduler
3
+
4
+
5
+
6
+ # load sd model
7
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
+ model_id = "stabilityai/stable-diffusion-2-1-base"
9
+ inv_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
10
+ inv_pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
11
+
12
+
13
+ def preprocess(data_path:str = 'examples/woman-running.mp4',
14
+ height:int = 512,
15
+ weidth: int = 512,
16
+ # save_dir: str = "latents",
17
+ steps: int = 500,
18
+ batch_size: int = 8,
19
+ save_steps: int = 50,
20
+ n_frames: int = 40,
21
+ inversion_prompt:str = ''
22
+ ):
23
+
24
+ # save_video_frames(data_path, img_size=(height, weidth))
25
+ frames = video_to_frames(data_path, img_size=(height, weidth))
26
+ # data_path = os.path.join('data', Path(video_path).stem)
27
+
28
+ toy_scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
29
+ toy_scheduler.set_timesteps(save_steps)
30
+ timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=save_steps,
31
+ strength=1.0,
32
+ device=device)
33
+ seed_everything(1)
34
+
35
+ frames, latents = get_data(inv_pipe, frames, n_frames)
36
+ # inverted_latents = noisy_latents
37
+ inverted_latents = extract_latents(inv_pipe, num_steps = steps,
38
+ latent_frames = latents,
39
+ batch_size = batch_size,
40
+ timesteps_to_save = timesteps_to_save,
41
+ inversion_prompt = inversion_prompt,)
42
+
43
+
44
+
45
+
46
+
47
+ return frames, latents, inverted_latents
48
+
49
  import gradio as gr
50
 
51
  ########