|
import re |
|
|
|
from transformers import DonutProcessor, VisionEncoderDecoderModel |
|
from datasets import load_dataset |
|
import torch |
|
|
|
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") |
|
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
dataset = load_dataset("hf-internal-testing/example-documents", split="test") |
|
image = dataset[2]["image"] |
|
|
|
|
|
task_prompt = "<s_cord-v2>" |
|
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids |
|
|
|
pixel_values = processor(image, return_tensors="pt").pixel_values |
|
|
|
outputs = model.generate( |
|
pixel_values.to(device), |
|
decoder_input_ids=decoder_input_ids.to(device), |
|
max_length=model.decoder.config.max_position_embeddings, |
|
pad_token_id=processor.tokenizer.pad_token_id, |
|
eos_token_id=processor.tokenizer.eos_token_id, |
|
use_cache=True, |
|
bad_words_ids=[[processor.tokenizer.unk_token_id]], |
|
return_dict_in_generate=True, |
|
) |
|
|
|
sequence = processor.batch_decode(outputs.sequences)[0] |
|
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") |
|
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() |
|
print(processor.token2json(sequence)) |
|
{'menu': {'nm': 'CINNAMON SUGAR', 'unitprice': '17,000', 'cnt': '1 x', 'price': '17,000'}, 'sub_total': {'subtotal_price': '17,000'}, 'total': {'total_price': '17,000', 'cashprice': '20,000', 'changeprice': '3,000'}} |
|
Step-by-step Document Visual Question Answering (DocVQA) |
|
Copied |
|
import re |
|
|
|
from transformers import DonutProcessor, VisionEncoderDecoderModel |
|
from datasets import load_dataset |
|
import torch |
|
|
|
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") |
|
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
dataset = load_dataset("hf-internal-testing/example-documents", split="test") |
|
image = dataset[0]["image"] |
|
|
|
|
|
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" |
|
question = "When is the coffee break?" |
|
prompt = task_prompt.replace("{user_input}", question) |
|
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids |
|
|
|
pixel_values = processor(image, return_tensors="pt").pixel_values |
|
|
|
outputs = model.generate( |
|
pixel_values.to(device), |
|
decoder_input_ids=decoder_input_ids.to(device), |
|
max_length=model.decoder.config.max_position_embeddings, |
|
pad_token_id=processor.tokenizer.pad_token_id, |
|
eos_token_id=processor.tokenizer.eos_token_id, |
|
use_cache=True, |
|
bad_words_ids=[[processor.tokenizer.unk_token_id]], |
|
return_dict_in_generate=True, |
|
) |
|
|
|
sequence = processor.batch_decode(outputs.sequences)[0] |
|
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") |
|
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() |
|
print(processor.token2json(sequence)) |