w3robotics
commited on
Create Parse.py
Browse files
Parse.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
4 |
+
from datasets import load_dataset
|
5 |
+
import torch
|
6 |
+
|
7 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
9 |
+
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model.to(device)
|
12 |
+
# load document image
|
13 |
+
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
14 |
+
image = dataset[2]["image"]
|
15 |
+
|
16 |
+
# prepare decoder inputs
|
17 |
+
task_prompt = "<s_cord-v2>"
|
18 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
19 |
+
|
20 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
21 |
+
|
22 |
+
outputs = model.generate(
|
23 |
+
pixel_values.to(device),
|
24 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
25 |
+
max_length=model.decoder.config.max_position_embeddings,
|
26 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
27 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
28 |
+
use_cache=True,
|
29 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
30 |
+
return_dict_in_generate=True,
|
31 |
+
)
|
32 |
+
|
33 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
34 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
35 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
36 |
+
print(processor.token2json(sequence))
|
37 |
+
{'menu': {'nm': 'CINNAMON SUGAR', 'unitprice': '17,000', 'cnt': '1 x', 'price': '17,000'}, 'sub_total': {'subtotal_price': '17,000'}, 'total': {'total_price': '17,000', 'cashprice': '20,000', 'changeprice': '3,000'}}
|
38 |
+
Step-by-step Document Visual Question Answering (DocVQA)
|
39 |
+
Copied
|
40 |
+
import re
|
41 |
+
|
42 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
43 |
+
from datasets import load_dataset
|
44 |
+
import torch
|
45 |
+
|
46 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
47 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
48 |
+
|
49 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
50 |
+
model.to(device)
|
51 |
+
# load document image from the DocVQA dataset
|
52 |
+
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
53 |
+
image = dataset[0]["image"]
|
54 |
+
|
55 |
+
# prepare decoder inputs
|
56 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
57 |
+
question = "When is the coffee break?"
|
58 |
+
prompt = task_prompt.replace("{user_input}", question)
|
59 |
+
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
60 |
+
|
61 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
62 |
+
|
63 |
+
outputs = model.generate(
|
64 |
+
pixel_values.to(device),
|
65 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
66 |
+
max_length=model.decoder.config.max_position_embeddings,
|
67 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
68 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
69 |
+
use_cache=True,
|
70 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
71 |
+
return_dict_in_generate=True,
|
72 |
+
)
|
73 |
+
|
74 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
75 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
76 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
77 |
+
print(processor.token2json(sequence))
|